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Abstract— We focus on push-based multi-object rearrange-
ment planning using nonholonomically constrained mobile
robots. The simultaneous geometric, kinematic, and physics
constraints make this problem especially challenging. Prior
work often relaxes some of these constraints by assuming
dexterous hardware, prehensile manipulation, or sparsely oc-
cupied workspaces. Our key insight is that by capturing these
constraints into a unified representation, we could empower
a constrained robot to tackle difficult problem instances by
modifying the environment in its favor. To this end, we introduce
a Push-Traversability graph, whose vertices represent poses
that the robot can push objects from, and edges represent
optimal, kinematically feasible, and stable transitions between
them. Based on this graph, we develop ReloPush, a planning
framework that takes as input a complex multi-object rear-
rangement task and breaks it down into a sequence of single-
object pushing tasks. We evaluate ReloPush across challenging
scenarios, involving the rearrangement of up to nine objects,
using a 1/10-scale robot racecar. Compared to two baselines
lacking our proposed graph structure, ReloPush exhibits orders
of magnitude faster runtimes and significantly more robust
execution in the real world, evidenced in lower execution times
and fewer losses of object contact.

I. INTRODUCTION

Autonomous mobile robots have revolutionized fulfillment
by offering a robust and scalable solution for large-scale
rearrangement tasks. Fulfillment centers leverage extensive
structure: robots often move across rectilinear rail grids, and
make use of specialized docking mechanisms. This structure
is missing from many other critical domains like construc-
tion, waste management, and small-to-medium warehouses.
These domains give rise to rearrangement tasks involving
objects of various shapes, and navigation among dense clutter
while respecting boundary and kinematics constraints.

A practical approach to extending the range of rear-
rangeable objects is pushing, a class of nonprehensile ma-
nipulation that handles objects without requiring secure
grasping [8]. This technique is appealing, as it enables
manipulation of large, heavy, or irregularly shaped objects
using relatively simple mechanisms. However, pushing in-
troduces motion constraints: maintaining object stability re-
quires avoiding abrupt turns and excessive accelerations.

To enable navigation among dense clutter in constrained
workspaces, prior research addressed such challenges using
the paradigm of planning among movable objects [13, 14],
strategically modifying the environment to facilitate plan-
ning. Yet, these approaches typically involve dexterous ma-
nipulators capable of unconstrained grasping, neglect orien-

1Department of Robotics, University of Michigan, Ann Arbor, USA.
Email: {jeeho, cmavro}@umich.edu

(a) Executing a rearrangement plan. (b) Resulting rearrangement.

Fig. 1: In this work, we describe ReloPush [2], a planning
framework for tackling multi-object rearrangement tasks with a
nonholonomic mobile robot pusher.

tation constraints on goal object poses, and assume generous
workspace boundaries.

Here, we focus on multi-object rearrangement via pushing
within confined workspaces using a nonholonomic mobile
robot pusher. Our key insight is that integrating geometric,
kinematic, and physics constraints into a unified repre-
sentation enables strategic environmental modification, thus
facilitating complex rearrangement tasks. To this end, we
introduce a push-traversability graph, where edges repre-
sent kinematically feasible and stable object displacements.
Planning on this graph yields effective rearrangement plans
for densely cluttered environments (Fig. 1). Extensive hard-
ware experiments, including the creation of room-scale pixel
art [1], underscore the robustness of our system. An extended
version of this work appears at ICRA 2025 [2].

II. PROBLEM STATEMENT

We consider a mobile robot pusher and a set of m
polygonal blocks in a workspace W ⊂ SE(2). We denote
the state of the pusher as p ∈ W and the states of the
blocks as oj ∈ W , j ∈ M = {1, . . . ,m}. The pusher
follows rear-axle, simple-car kinematics ṗ = f(p, u), where
u represents a control action (speed and steering angle),
and may push objects using a flat bumper attached at its
front. The goal of the pusher is to rearrange the blocks
from their starting configuration, Os = (os1, . . . , o

s
m), to a

goal configuration, Og = (og1, . . . , o
g
m). We seek to develop

a planning framework to enable the pusher to efficiently
rearrange all objects into their goal poses. We assume that the
pusher has accurate knowledge of its ego pose at all times,
and of the starting configuration of all objects, Os.



Fig. 2: The ReloPush architecture. Given the initial pose of the pusher and a rearrangement task in the form of start/goal object poses,
ReloPush plans an efficient sequence of rearrangement subtasks to be executed by the robot via pushing.

(a) Pushing poses (b) Path Plan (c) PT-graph

Fig. 3: PT-graph generation. (a) First, every object is assigned K
pushing poses (e.g., a cubic object has 4 pushing poses). (b) For
any pair of pushing poses, we check if a collision-free path that
respects the steering limit for quasistatic pushing can be drawn.
(c) For each valid path, we construct a directed edge between its
start/goal vertices.

III. RELOPUSH: NONPREHENSILE MULTI-OBJECT
REARRANGEMENT

A. System Overview

Given a workspace W , an initial robot pose ps, and a set
of objects that need to be reconfigured from their starting
poses Os to their goal poses Og , ReloPush finds a sequence
of rearrangements in a greedy fashion. It first constructs a
rearrangement graph (PT-graph) that accounts for robot kine-
matics, push stability, and workspace boundary constraints.
Using graph search, ReloPush searches for the collision-free
object rearrangement path of lowest cost. If such a path is
found, the graph is updated to mark the rearranged object
as an obstacle, and the planner is invoked again to find the
next rearrangement of lowest cost. If the path found passes
through a blocking object, ReloPush displaces that object out
of the way first. If the path violates the workspace boundary,
ReloPush displaces the object to be pushed until the path
to its goal meets the boundary constraint. If the path is
infeasible (i.e., fails to find a motion to approach the object
to push), it replans with next rearrangement candidate that
has the next lowest cost. This process is repeated until a full
rearrangement sequence for all objects is found. An overview
of our architecture is shown in Fig. 2.

B. Push-Traversability Graph

A traversability graph (T-graph) is a representation of
how movable objects can be reconfigured in a cluttered
scene [9]. In its original form, vertices represent (starting and
goal) positions of objects and edges represent collision-free
transitions between them. By searching the graph, a collision-
free rearrangement plan can be found.

(a) Object traversability. (b) PT-graph for the task in (a).

Fig. 4: (a) Two objects (navy squares) need to be rearranged to
goal poses (yellow squares). (b) The PT-graph: nodes are pushing
poses and edges are Dubins paths connecting them. By searching
the graph, we can determine if any blocking objects need to be
removed. For instance, the initial pose of object 1 is found to be
blocking the shortest rearrangement of object 2 (red path).

Here, we build on the T-graph representation to introduce
the push-traversability graph (PT-graph) G(V,E), which
not only captures the spatial relationships among movable
objects but also integrates the kinematic constraints of the
pusher and push-stability constraints of objects within the
edges. Because in push-based manipulation of polygonal
blocks, the block orientation is important, each vertex in
our graph vi ∈ V represents a valid robot pushing pose pi,
i.e., a pose from which the pusher can start pushing a block
(see Fig. 3).

For each vertex pair (vs, vg) representing start and goal
pushing poses, we construct a directed edge if the optimal
Dubins path [3] connecting them is collision-free and within
workspace bounds. The optimal path uses left (L), right (R),
and straight (S) motion primitives with a minimum turning
radius ρ to ensure quasistatic pushing stability [4, 5, 7, 16].
Each valid edge is assigned a weight equal to the path length,
with direction dictated by stability constraints (e.g., forward-
only pushing).

C. Prerelocation: Change of Starting Pushing Pose

Often, an edge between two vertices cannot be formed
because the connecting Dubins curve violates the workspace
boundary, typically due to the limited turning radius ρ
required for push stability (see Fig. 5). Our insight is that
a slight adjustment of the initial pushing pose can yield an
optimal, collision-free rearrangement path within workspace
bounds. ReloPush leveraves Dubins path classification [6, 10]
to examine the case of the initial Dubins curve for rearrange-
ment, namely long-path case or short-path case. When the
start and goal poses are too closely located that it require
large turning, a short-path case, ReloPush attempts to find



Fig. 5: Two Dubins curves with the same goal pose (top right) and
maximum turning radius. When the start pose is too close to the
goal (d ≤ dth), the resulting Dubins curve (green color) is a Short
Path involving large turns violating the workspace boundary. Using
Dubins path classification [6, 10], we can determine a prerelocation
of the object’s starting pose to allow reaching the goal via a Long
Path (d > dth) which will involve smaller turning arcs (gray color).

another pose to start from that makes it a long-path case. We
refer to this change of starting pose as a Prerelocation.

D. Removing Blocking Objects
Extracting a rearrangement path plan can be done by

searching the PT-graph using any graph search algorithm.
The extracted path may include a vertex that is different
from the start and goal vertex. If that is the case, then that
vertex corresponds to an object that is physically blocking
the rearrangement path. This object needs to be displaced
before the plan can be executed. To do so, we follow a
similar technique to how we plan Prerelocations: we find
the closest relocation along the object’s pushing directions
(see Fig. 3a) that unblocks the path execution. This method
of finding what object to remove is shown to be complete [9].

E. Analysis of the Algorithm
Theorem 3.1: Assuming a bounded number of pushing

poses per object, Kmax, the graph construction runs in
polynomial time.

Proof: The number of vertices per object is bounded
by Kmax, thus, a fully connected graph in our case has
Kmax ·m vertices. For each edge, a Dubins path is found
in O(1) and its collision checking is done in O(1) assum-
ing a bounded number of configurations checked due to
our confined workspace. Searching a graph with Dijkstra’s
algorithm runs in O(|V |2) in a directed complete graph
(the number of edges dominates). Thus, the runtime for a
the rearrangement of m objects reduces to O(m3). To plan
motion to approach an object, we invoke Hybrid A*, whose
runtime also reduces to a polynomial expression on the
number of objects assuming fixed workspace discretization,
resolution of driving directions, and replanning attempts.

IV. EVALUATION

A. Implementation
Experimental Setup. We implement our framework on

MuSHR [12], an open-source 1/10th-scale mobile robot

racecar, augmented with a 3D-printed flat bumper for push-
ing deployed in a workspace of area 4× 5.2m2. Across
simulations and hardware experiments, we assume access to
accurate robot localization (in real experiments, we make use
of an overhead motion-capture system). We use objects of
cubic shape with a side of 0.15m and a mass of 0.44 kg.
The friction coefficient on the bumper-object surface was
measured to be ∼ 0.73.

Software. We implement our framework using the Open
Motion Planning Library for Dubins path planning [15],
and the code of Wen et al. [17] for Hybrid A∗ plan-
ning. Across simulated and real-world experiments, we
use a Receding Horizon Controller (RHC) based on the
implementation of the MuSHR [12] ecosystem. We run
graph construction and search using Boost Graph Li-
brary [11]. We share our software implementation online at
https://github.com/fluentrobotics/ReloPush.

Metrics. We evaluate our system with respect to the
following metrics:

• S: Success rate – a trial is successful if a planner
successfully finds a feasible rearrangement sequence.

• Tp: The time it takes to compute a complete rearrange-
ment plan.

• Lt: The total length of the path that the robot travelled,
including the reaching and pushing segments.

• Nloss: The total number of objects the robot lost contact
with.

• Te: The total time takes to execute a complete rear-
rangement plan.

We also extract insights on the planning behavior of all
algorithms using the following indices:

• Npre: The total number of objects prerelocated to a
feasible starting pushing pose (see Fig. 5).

• Nobs: The total number of removed blocking objects
(see Fig. 4).

• Lp: The total length of path segments involving pushing.
Baselines. We compare the performance of ReloPush

against two baselines:
• NO-PRERELO (NPR): a variant of RELOPUSH that also

uses the PT-graph to handle nonmonotone cases but
does not plan prerelocations. Instead, it invokes Hybrid
A∗ if a collision-free Dubins path is found, to add edges.

• MP: a variant of our system that does not make use of
the PT-graph at all but rather invokes Hybrid A∗ to plan
a sequence of rearrangement tasks in a greedy fashion,
and thus can only handle monotone cases.

Experimental Procedure. We consider a series of re-
arrangement scenarios of varying complexity (see Fig. 6)
instantiated in simulation and the real world. To extract
statistics on planning performance, we instantiated 100 trials
of each scenario by locally randomizing the start and goal
positions of objects within a range of ±0.05m around the
nominal instances of Fig. 6. To evaluate the robustness of
our complete architecture, we executed the same scenarios
in a physical workspace on a real MuSHR [12] robot. To
ensure fairness in real-robot experiments, we chose instances



(a) m = 3 (b) m = 4 (c) m = 5 (d) m = 6 (e) m = 8

Fig. 6: Evaluation scenarios. Solid squares represent starting object poses and dashed squares represent goal poses.

TABLE I: Planning performance. Each cell lists the mean and the standard deviation over 100 trials per scenario.
Scenario m = 3 m = 4 m = 5 m = 6 m = 8
Algorithm RELOPUSH NPR MP RELOPUSH NPR MP RELOPUSH NPR MP RELOPUSH NPR MP RELOPUSH NPR MP

S (%) 100 55 52 100 100 73 80 64 56 89 25 3 86 12 6
Tp (ms) 40 (4.3) 1864 (141.1) 465 (67.4) 86 (3.5) 5376 (131.5) 956 (36.0) 146 (6.8) 9034 (581.5) 1175 (117.6) 318 (20.8) 14489 (682.3) 1487 (57.4) 529 (23.5) 25654 (2205.6) 2073 (149.5)
Lt (m) 32.3 (3.1) 42.1 (5.2) 38.7 (7.3) 40.3 (0.8) 45.5 (2.5) 45.1 (2.5) 48.3 (3.5) 60.8 (6.5) 61.0 (9.1) 77.6 (5.5) 74.5 (15.2) 62.9 (1.0) 90.3 (6.0) 105.8 (4.2) 101.6 (3.5)

TABLE II: Planning behavior. Each cell lists the mean and the standard deviation over 100 simulated trials per scenario.
Scenario m = 3 m = 4 m = 5 m = 6 m = 8

Algorithm RELOPUSH NPR MP RELOPUSH NPR MP RELOPUSH NPR MP RELOPUSH NPR MP RELOPUSH NPR MP

Npre 0.9 (0.29) - - 1.0 (0.00) - - 1.6 (0.49) - - 3.0 (0.45) - - 4.4 (0.59) - -
Nobs 0.0 (0.00) 0.0 (0.00) - 0.0 (0.00) 0.0 (0.00) - 0.5 (0.52) 1.0 (0.25) - 1.0 (0.00) 0.5 (0.50) - 0.6 (0.49) 0.0 (0.00) -
Lp (m) 8.4 (0.1) 19.1 (4.4) 17.8 (4.3) 8.5 (0.10) 18.1 (0.8) 17.3 (0.9) 11.2 (0.5) 29.6 (10.1) 37.6 (7.2) 13.9 (0.9) 37.2 (7.8) 35.6 (0.4) 23.7 (0.76) 59.3 (3.1) 55.9 (4.0)

TABLE III: Results from real-world trials. Each cell lists the mean and the standard deviation over 5 trials per scenario.
Scenario m = 3 m = 4 m = 5 m = 6 m = 8
Algorithm RELOPUSH NPR MP RELOPUSH NPR MP RELOPUSH NPR MP RELOPUSH NPR MP RELOPUSH NPR MP

Nloss 0.0 (0.0) 0.6 (0.49) 1.0 (0.0) 0.0 (0.0) 0.6 (0.49) 1.0 (0.63) 0.0 (0.0) 0.4 (0.49) 0.8 (0.75) 0.2 (0.40) 1.4 (0.49) 1.2 (0.40) 0.2 (0.4) 2.0 (0.63) 1.6 (0.49)
Te (s) 96.6 (0.07) 114.4 (0.49) 104.0 (4.23) 121.7 (0.32) 137.4 (1.05) 133.7 (0.37) 148.1 (0.66) 154.0 (1.46) 235.8 (1.71) 256.2 (3.08) 198.9 (2.74) 182.97 (1.20) 274.4 (0.33) 314.9 (2.28) 285.9 (1.40)

Fig. 7: Average planning time across scenarios, shown in loga-
rithmic scale. ReloPush scales well with the number of objects
compared to baselines.

where all algorithms were successful in planning. We ran
each scenario 5 times per algorithm.

B. Results

Planning Performance. ReloPush dominates baselines in
success rate and planning time (see Table I, Fig. 7). The
gap becomes more pronounced as the clutter (number of
objects) increases. This happens because increased clutter is
more likely to lead to nonmonotone instances. For example,
most m = 6 instances are nonmonotone because two objects
overlap with goals of other objects. Since MP can only
handle monotone rearrangements, it fails more frequently
in these harder instances. It is also worth observing that
kinematic constraints make some instances harder to solve
regardless of the number of objects. For example, some of
the m = 3 instances are challenging because os2 is situated
so close to its goal og2 that the optimal path connecting them
goes out of the boundary. In contrast, ReloPush handled this
scenario effectively via prerelocation. Table II provides intu-
ition on the planning decisions that ReloPush made enabled
increased performance. As clutter increases, ReloPush makes

(a) MP (b) RELOPUSH

Fig. 8: Paths generated by MP (a) and RELOPUSH (b) for the
m = 6 scenario. Squares and circles represent respectively start and
goal object poses. Continuous lines represent planned paths with
pushing segments shown in yellow. RELOPUSH plans substantially
shorter pushing segments to minimize the risk of losing contact
with an object during execution.

increasingly more workspace modifications (prerelocations
and blocking-object removals).

Real Robot Experiments. ReloPush never lost contact
with any objects, in contrast to baselines (see Table III).
One reason for that is that ReloPush maintains low pushing
path length (for better or similar total path length) as shown
in Table II. The shorter the pushing distance, the lower the
risk of losing the object due to model errors and uncertainties
(see Fig. 8). A video with footage from our experiments can
be found at https://youtu.be/ EwHuF8XAjk.
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