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with a Nonholonomic Mobile Robot Pusher
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Abstract— We focus on push-based multi-object rearrange-
ment planning using a nonholonomically constrained mobile
robot. The simultaneous geometric, kinematic, and physics
constraints make this problem especially challenging. Prior
work on rearrangement planning often relaxes some of these
constraints by assuming dexterous hardware, prehensile manip-
ulation, or sparsely occupied workspaces. Our key insight is that
by capturing these constraints into a unified representation, we
could empower a constrained robot to tackle difficult problem
instances by modifying the environment in its favor. To this
end, we introduce a Push-Traversability graph, whose vertices
represent poses that the robot can push objects from, and edges
represent optimal, kinematically feasible, and stable transitions
between them. Based on this graph, we develop ReloPush,
a graph-based planning framework that takes as input a
complex multi-object rearrangement task and breaks it down
into a sequence of single-object pushing tasks. We evaluate
ReloPush across a series of challenging scenarios, involving
the rearrangement of densely cluttered workspaces with up
to nine objects, using a 1/10-scale robot racecar. ReloPush
exhibits orders of magnitude faster runtimes and significantly
more robust execution in the real world, evidenced in lower
execution times and fewer losses of object contact, compared
to two baselines lacking our proposed graph structure.

I. INTRODUCTION

Autonomous mobile robots have revolutionized fulfillment
by offering a robust and scalable solution for completing
massive rearrangement tasks. Fulfillment sites tend to be
highly structured, requiring extensive workspace engineer-
ing, like the installation of rails along rectilinear grids,
and specialized docking mechanisms for handling packages.
While effective, this approach can be prohibitively costly
and impractical for many critical domains like construction,
waste management, and small/medium-sized warehouses.
These environments involve rearrangement tasks for a wide
range of object geometries, require precise navigation among
static and movable objects contrast, and impose practical
constraints like respecting tight geometric boundaries and
robot kinematics.

A practical technique to expand the diversity of objects
that mobile robots can rearrange is pushing. Pushing is a
form of nonprehensile manipulation, a class of manipulation
that does not require secure grasping but rather exploits the
task mechanics to rearrange an object [22]. This is appealing
because it enables the rearrangement of large, heavy, or
unstructured objects even by simple mechanisms. However,
pushing introduces constraints to robot motion: to ensure
object stability, robots need to avoid abrupt turns and high
accelerations.
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(a) Executing a rearrangement plan. (b) Resulting rearrangement.

Fig. 1: In this work, we describe ReloPush, a planning framework
for tackling multi-object rearrangement tasks with a nonholonomic
mobile robot pusher.

Real-world applications impose additional pragmatic con-
straints that need to be taken into account, i.e., geometric
constraints imposed by the workspace boundary and by
obstacles within, and robot kinematics (e.g., nonholonomic
constraints). These constraints, in conjunction with push-
stability constraints may render many practical rearrange-
ment tasks infeasible. Prior work has tackled constrained
rearrangement tasks by embracing the paradigm of planning
among movable objects [33, 35], in which the robot strategi-
cally modifies its environment to simplify planning. Previous
applications emphasize the use of dexterous manipulators
that are often capable of unconstrained overhand grasping,
ignore orientation specifications on goal object poses, and
assume generous workspace boundaries. These assumptions
severely limit the potential of robot deployments for achiev-
ing practical productivity in real-world applications.

In this work, we focus on the problem of rearranging
a set of objects into a set of desired final poses within
a confined workspace via pushing, using a nonholonomic
mobile robot pusher. Our key insight is that we could
capture geometric, physics, and kinematic constraints into
a unified representation that could enable the robot to
understand when and how to modify the environment to
complete its downstream rearrangement task. To this end,
we introduce a push-traversability graph whose edges repre-
sent kinematically feasible and stable object displacements.
By planning on this graph, we achieve fast and effective
rearrangement planning that can handle multiple objects in
a confined space as shown in Fig. 1. Our code can be found
at https://github.com/fluentrobotics/ReloPush and footage
from our experiments at https://youtu.be/ EwHuF8XAjk.
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II. RELATED WORK

Planning among Movable Obstacles. Many real-world
environments include movable obstacles that robots can
manipulate to free up space to make path planning feasible.
This problem, first formulated by Wilfong [40] is PSPACE-
hard when the final positions of objects are specified (these
instances are known as labeled) and NP-hard otherwise
(instances known as unlabeled). However, the relevance of
the problem has motivated extensive investigation. Chen
and Hwang [5] devised a hierarchical planner that proved
effective in environments with polygonal obstacles. Stilman
and Kuffner [34] demonstrated real-time planning among
movable obstacles in realistic, cluttered households. Later ap-
proaches exhibited important properties such as probabilistic
completeness [38] and extensions to manipulation with high-
DoF (degrees of freedom) arms [11, 15, 35].

We tailor the concept of planning among movable objects
to a nonholonomic pusher, leveraging insights from Dubins
path classification [20, 30]. In cases where the optimal
rearrangement path violates the workspace boundary, we
modify the object’s starting pose to transition to a different
optimal solution. When an obstacle is blocking an optimal
object rearrangement, we remove the object to clear the way,
by building on prior work on traversability graphs [24].

Rearrangement Planning. In rearrangement problems,
the goal is to move a set of objects to (possibly predefined)
goal poses. These are divided into two classes [26]: monotone
instances, where each object only needs to be moved once,
and non-monotone ones, requiring more than one movement
per object. Much of the prior work focuses on monotone
instances [3, 33, 35, 37], but real-world, densely cluttered
spaces often give rise to non-monotone instances. While
these have been shown to be NP-hard [14], recent algorithms
have demonstrated practical performance in manipulation
tasks [10, 14, 17, 27, 28]. While many works account also
for geometric [1, 2, 24] and kinodynamic constraints [29],
most approaches make simplifying assumptions such as tasks
without object orientation constraints, holonomic robots [25],
and high-DoF manipulators [17, 18, 27].

We target monotone and non-monotone, labeled problem
instances for a pusher that accounts for geometric, kinematic,
and stability constraints. Through a novel push-traversability
graph whose edges incorporate all of these constraints, we
manage to plan for challenging rearrangement instances in
orders of magnitude lower runtimes than baselines.

Nonprehensile Rearrangement. Some works tackle re-
arrangement tasks using nonprehensile manipulation. Dogar
and Srinivasa [6] describe a planner that iteratively removes
clutter via pushing to retrieve objects of interest in cluttered
tabletops. King et al. [15] develop a trajectory optimizer
that pushes objects to simplify downstream manipulation
tasks. Huang et al. [14] use iterated local search to handle
problems like singulation and sorting in densely cluttered
tabletops. Talia et al. [37] use multiagent pathfinding to
distribute rearrangement tasks to a team of nonholonomic
pushers. Some works focus on modeling the dynamics of

pushing [4, 13] to inform motion planning [11] whereas
others learn adaptive pushing control policies [19, 41] using
data-driven techniques. For many domains, a practical as-
sumption involves quasistatic pushing, for which analytical
motion models exist [9, 12, 21, 23]. Quasistatic pushing can
empower simple control laws or even open-loop systems to
perform robustly on many real-world problems.

While much of prior on nonprehensile rearrangement
planning assumes high-DoF manipulators [4, 11, 14, 15,
17, 18, 27, 35], we demonstrate the practicality of qua-
sistatic pushing on a nonholonomic mobile robot pusher [32].
We move beyond prior work on nonholonomic nonprehen-
sile rearrangement planning [16, 37, 37] by handling non-
monotone problem instances in densely cluttered spaces (up
to nine blocks of 0.15m side in a 4 x 5.2m?2 area).

III. PROBLEM STATEMENT

We consider a mobile robot pusher and a set of m
polygonal blocks in a workspace W C SE(2). We denote
the state of the pusher as p € W and the states of the
blocks as o; € W, j € M = {1,...,m}. The pusher
follows rear-axle, simple-car kinematics p = f(p, u), where
u represents a control action (speed and steering angle), and
may push objects using a flat bumper attached at its front
(see Fig. 7). The goal of the pusher is to rearrange the blocks
from their starting configuration, O°* = (of,...,05,), to a
goal configuration, 09 = (07, ..., 09,). We seek to develop
a planning framework to enable the pusher to efficiently
rearrange all objects into their goal poses. We assume that the
pusher has accurate knowledge of its ego pose at all times,
and of the starting configuration of all objects, O°.

IV. RELOPUSH: NONPREHENSILE MULTI-OBJECT
REARRANGEMENT

We describe ReloPush, a planning framework for multi-
object rearrangement via pushing. ReloPush breaks down a
complex rearrangement task into an efficient sequence of
single-object push-based rearrangement subtasks.

A. System Overview

Given a workspace WV, an initial robot pose p,, and a set
of objects that need to be reconfigured from their starting
poses O° to their goal poses 09, ReloPush finds a sequence
of rearrangements in a greedy fashion. It first constructs a
rearrangement graph (PT-graph) that accounts for robot kine-
matics, push stability, and workspace boundary constraints.
Using graph search, ReloPush searches for the collision-free
object rearrangement path of lowest cost. If such a path is
found, the graph is updated to mark the rearranged object
as an obstacle, and the planner is invoked again to find the
next rearrangement of lowest cost. If the path found passes
through a blocking object, ReloPush displaces that object out
of the way first. If the path violates the workspace boundary,
ReloPush displaces the object to be pushed until the path
to its goal meets the boundary constraint. If the path is
infeasible (i.e., fails to find a motion to approach the object
to push), it replans with next rearrangement candidate that
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Fig. 2: The ReloPush architecture. Given the initial pose of the pusher and a rearrangement task in the form of start/goal object poses,
ReloPush plans an efficient sequence of rearrangement subtasks to be executed by the robot via pushing.
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Fig. 3: PT-graph generation. (a) First, every object is assigned K
pushing poses (e.g., a cubic object has 4 pushing poses). (b) For
any pair of pushing poses, we check if a collision-free path that
respects the steering limit for quasistatic pushing can be drawn.
(c) For each valid path, we construct a directed edge between its
start/goal vertices.

has the next lowest cost. This process is repeated until a full
rearrangement sequence for all objects is found. An overview
of our architecture is shown in Fig. 2.

B. Push-Traversability Graph

A traversability graph (T-graph) is a representation of
how movable objects can be reconfigured in a cluttered
scene [24]. In its original form, vertices represent (starting
and goal) positions of objects and edges represent collision-
free transitions between them. By searching the graph, a
collision-free rearrangement plan can be found.

Here, we build on the T-graph representation to introduce
the push-traversability graph (PT-graph) G(V,E), which
not only captures the spatial relationships among movable
objects but also integrates the kinematic constraints of the
pusher and push-stability constraints of objects within the
edges. Because in push-based manipulation of polygonal
blocks, the block orientation is important, each vertex in
our graph v; € V represents a valid robot pushing pose p;,
i.e., a pose from which the pusher can start pushing a block
(see Fig. 3).

For any pair of vertices (vs, vq) representing a pair of start
and goal pushing poses (ps,pg), a directed edge e is formed
from v, to vy if the optimal path from p, to p, is collision-
free and within the workspace boundary. Optimality in the
transitions is motivated by the heavily constrained problem
domain which further demands efficient use of space. For a
nonholonomically constrained mobile robot, the optimal path
from p, to pg is a Dubins curve, and can be synthesized using
L, R, and S primitives corresponding respectively to left,
right, and straight motion [8]. To account for push stability,
the L/R primitives are implemented using a minimum turning

(a) Object traversability. (b) PT-graph for the task in (a).

Fig. 4: (a) Two objects (navy squares) need to be rearranged to
goal poses (yellow squares). (b) The PT-graph: nodes are pushing
poses and edges are Dubins paths connecting them. By searching
the graph, we can determine if any blocking objects need to be
removed. For instance, the initial pose of object 1 is found to be
blocking the shortest rearrangement of object 2 (red path).

radius p that ensures stable pushing under the quasistatic
assumption [9, 15, 21, 37]. If the Dubins curve is collision-
free and within the boundary, a directed edge is constructed
from v, to vy, and assigned a weight that is equal to the
length of the curve. The edge direction is dictated by pushing
stability constraints (e.g., contact cannot be maintained if
the pusher moves backwards). Alg. 1 describes the graph
construction and Fig. 4 shows an example.

C. Prerelocation: Change of Starting Pushing Pose

Often, an edge between two vertices cannot be formed
because the Dubins curve connecting them violates the
workspace boundary. This is especially common due to
the limited turning radius p imposed by the push stability
constraint (see Fig. 5). Our insight is that a small change
in the starting pushing pose might allow for an optimal,
collision-free rearrangement that lies entirely within the
workspace boundary. To this end, we leverage prior work
on the classification of Dubins curves [20, 30]. Intuitively,
because of the robot’s kinematic constraints, if the start and
goal poses are “too close”, the Dubins curve connecting them
will tend to require a sequence of wide turns that violate
the workspace boundary. In particular, if the Euclidean
distance d between the start and goal poses, normalized
by the turning radius p, is smaller than a threshold dy,,
the Dubins curve connecting them is a Short path that will
likely include an excessive turning arc. If d > dgp, the
corresponding Dubins curve is a Long path that will likely
not require excessive wide turning. This threshold can be
found to be dyj, = [sin | + |sin B] + /4 — (cos a + cos )2,
where o and (3 represent the start and goal orientations with
respect to the line connecting them and transformed to be
horizontal [20, 30]. Fig. 5 shows two paths starting from
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Fig. 5: Two Dubins curves with the same goal pose (top right)
and maximum turning radius. When the start pose is too close to
the goal (d < d;p), the resulting Dubins curve (green color) is a
Short Path involving large turns violating the workspace boundary.
Using Dubins path classification [20, 30], we can determine a
prerelocation of the object’s starting pose to allow reaching the
goal via a Long Path (d > d;;) which will involve smaller turning
arcs (gray color).

different poses and leading to the same goal pose via a
Long and a Short path. By moving the object’s starting pose
slightly towards the bottom, a Long Dubins curve leading to
the goal pose can be found to be within bounds.

For instances where an object rearrangement path is found
to be out-of-bounds and meet the condition of a Short path
(with excessive turning, i.e., d < d;), we attempt to find
another start pose p, that can be connected to p, via a
collision-free Long Dubins curve and that is reachable by
the robot from p,;. We refer to this change of starting pose
from ps to p. as a Prerelocation. To find p), we evenly
sample configurations along the pushing directions of the
object (see Fig. 3a), and choose a configuration that meets
the conditions above, while requiring minimal displacement
llps — p%|| from its initial configuration. This process is
abstracted as the function FINDPRERELO in Alg. 1.

D. Removing Blocking Objects

Extracting a rearrangement path plan can be done by
searching the PT-graph using any graph search algorithm.
The extracted path may include a vertex that is different
from the start and goal vertex. If that is the case, then that
vertex corresponds to an object that is physically blocking
the rearrangement path. This object needs to be displaced
before the plan can be executed. To do so, we follow a
similar technique to how we plan Prerelocations: we find
the closest relocation along the object’s pushing directions
(see Fig. 3a) that unblocks the path execution. This method of
finding what object to remove is shown to be complete [24].

E. Reaching to Push an Object

To execute a rearrangement plan, the pusher needs to
navigate between objects. To do that, we invoke a motion
planner to check if there is a collision-free path connecting
the robot’s pose with a pushing pose. For every object
rearrangement, there is at least one motion plan invocation
to find a motion to approach an object. If a rearrangement

Algorithm 1 GENGRAPH

Input: Object start poses O°, Object goal poses O9, Workspace VW, Min.
Turning Radius p
Output: Push-Traversability Graph G

1 V = GENVERTICES(O®, O9)

...... /l construct a vertex for each pushing pose for each object start/goal
2 € = D /l start with no edge
3 for each vs in V

4 if vg is vertex of OY

5 continue .................... // does not consider push from goals
6 else

7 for each vy in V), ng #Ou, oo, /l vertex of another object
8 PbDubins = VALIDDUBINS (vs, vg, p, W)

..... //find a Dubins curve from vs to vy and check if it is collision-free
...................................................... // and within W

9 i PDubins «ovevenveneneenennans //if the Dubins curve is valid
10 & < EU (vs,vg, PDubins) " ||PDubins|| to be used as the
weight

11 else

12 if Ppupins is out of bounds

13 Ppre = FINDPRERELO(vs, vg, W)

...... // find different start pose near v that induces a valid Dubins curve
14 if ppre ool // a prerelocation made the push valid
15 Phubins = VALIDDUBINS (vpre, vg, p, W)

16 E < EU (vs,vg,Vpre) ... |Phyupins!l is new path
weight

17 endif ...... .. ... ..l / pre-relocation
18 endif ...... .. ... // out of bound
19 endif ... /validity of dubins curve
20 end for ........ .. ... g
21 endif ... /lv not in O9
22 end fOr .. ... .. ... I vs

23 return G(V, E)

involves a prerelocation or the removal of a blocking object,
an additional motion plan is invoked. Any motion planner
could be used but we found convenient to use Hybrid A* [7].

F. Analysis of the Algorithm

Theorem 4.1: Assuming a bounded number of pushing
poses per object, K,,,;, the graph construction runs in
polynomial time.

Proof: The number of vertices per object is bounded
by K,,qz, thus, a fully connected graph in our case has
Kphar - m vertices. For each edge, a Dubins path is found
in O(1) and its collision checking is done in O(1) assum-
ing a bounded number of configurations checked due to
our confined workspace. Searching a graph with Dijkstra’s
algorithm runs in O(|V|?) in a directed complete graph
(the number of edges dominates). Thus, the runtime for a
the rearrangement of m objects reduces to O(m?). To plan
motion to approach an object, we invoke Hybrid A*, whose
runtime also reduces to a polynomial expression on the
number of objects assuming fixed workspace discretization,
resolution of driving directions, and replanning attempts. W

Theorem 4.2: Alg. 1 is complete if FINDPRERELO is
complete.

Proof: The collision checking for each Dubins path
is complete since it always finds a collision if one exists by
checking all grid cells that the path occupies. Thus, Alg. 1 is
complete since it constructs the graph G after a finite number
of iterations, assuming that FINDPRERELO is complete. W

Theorem 4.3: RELOPUSH is complete if Alg. 1 is com-
plete and at least one object pose is reachable by the robot.
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Fig. 6: Evaluation scenarios. Solid squares represent starting object poses and dashed squares represent goal poses.

(b) Real-robot trial.
Fig. 7: Stills from simulated (a) and real robot (b) experiments.

(a) Simulated trial.

Proof: By construction, an edge e € E between a pair
(vs,vg) represents a feasible path from p, to py. Thus, any
path on G is a collision-free path within the workspace W.
Therefore, for any path on G, if the robot can plan a path to
its starting vertex, a complete rearrangement is feasible. W

V. EVALUATION

We investigate the efficacy, scalability, and robustness of
ReloPush in simulations and hardware experiments (Fig. 7).

A. Implementation

Experimental Setup. We implement our framework on
MuSHR [32], an open-source 1/10th-scale mobile robot race-
car, augmented with a 3D-printed flat bumper for pushing
(see Fig. 7b), similar to the one used by Talia et al. [37],
deployed in a workspace of area 4 x 5.2m?. Simulations
do not involve physics computations — insights about the
pushing performance can be extracted from our real-world
experiments. Across simulations and hardware experiments,
we assume access to accurate robot localization (in real
experiments, we make use of an overhead motion-capture
system). We use objects of cubic shape with a side of 0.15m
and a mass of 0.44 kg. The friction coefficient on the bumper-
object surface was measured to be ~ 0.73.

Software. We implement our framework using the Open
Motion Planning Library for Dubins path planning [36], and
the code of Wen et al. [39] for Hybrid A* planning. Across
simulated and real-world experiments, we use a Receding

Horizon Controller (RHC) based on the implementation of
the MuSHR [32] ecosystem. We run graph construction
and search using Boost Graph Library [31]. For searching
the PT-Graph, we use Dijkstra’s algorithm but any graph
search algorithm can be used. All planning experiments are
conducted on a desktop equipped with an Intel Core i7-13700
CPU and 32G RAM. We share our software implementation
online at https://github.com/fluentrobotics/ReloPush.

Metrics. We evaluate our system with respect to the
following metrics:

e S: Success rate — a trial is successful if a planner
successfully finds a feasible rearrangement sequence.

e T),: The time it takes to compute a complete rearrange-
ment plan.

o L;: The total length of the path that the robot travelled,
including the reaching and pushing segments.

e Njoss: The total number of objects the robot lost contact
with.

o T,.: The total time takes to execute a complete rear-
rangement plan.

We also extract insights on the planning behavior of all
algorithms using the following indices:

e Npre: The total number of objects prerelocated to a
feasible starting pushing pose (see Fig. 5).
e Nyys: The total number of removed blocking objects
(see Fig. 4).
e L,: The total length of path segments involving pushing.
Baselines. We compare the performance of ReloPush
against two baselines:

e NO-PRERELO (NPR): a variant of RELOPUSH that also
uses the PT-graph to handle non-monotone cases but
does not plan prerelocations. Instead, it invokes Hybrid
A* if a collision-free Dubins path is found, to add edges.

o MP: a variant of our system that does not make use of
the PT-graph at all but rather invokes Hybrid A* to plan
a sequence of rearrangement tasks in a greedy fashion,
and thus can only handle monotone cases.

Experimental Procedure. We consider a series of re-
arrangement scenarios of varying complexity (see Fig. 6)
instantiated in simulation and the real world. To extract
statistics on planning performance, we instantiated 100 trials
of each scenario by locally randomizing the start and goal
positions of objects within a range of +0.05m around the
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TABLE I: Planning performance. Each cell lists the mean and the standard deviation over 100 trials per scenario.

Scenario m=3 | m=4 | m=5 | m=6 | m=8

Algorithm | RELOPUSH | NPR | MP | RELOPUSH | NPR | MP | RELOPUSH | NPR | MP | RELOPUSH | NPR | MP | RELOPUSH | NPR | MP

S (%) 100 55 52 100 100 73 80 64 56 89 25 3 86 12 6

Ty (ms) 40 (4.3) 1864 (141.1) | 465 (67.4) 86 (3.5) 5376 (131.5) | 956 (36.0) 146 (6.8) 9034 (581.5) | 1175 (117.6) | 318 (20.8) 14489 (682.3) | 1487 (57.4) | 529 (23.5) | 25654 (2205.6) | 2073 (149.5)
Lt (m) 32330 42.1(5.2) 38.7 (7.3) 40.3 (0.8) 45.5(2.5) 45.1 (2.5) 48.3 (3.5) 60.8 (6.5) 61.0 9.1) 776 (5.5) 74.5 (15.2) 62.9 (1.0) 90.3 (6.0) 105.8 (4.2) 101.6 (3.5)

TABLE II: Planning behavior. Each cell lists the mean and the standard deviation over 100 simulated trials per scenario.

Scenario | m=3 | m=4 | m=5 | m=6 | m=38

Algorithm | RELOPUSH | NPR | MP | RELOPUSH | NPR | MP | RELOPUSH | NPR | MP | RELOPUSH | NPR | MP | RELOPUSH | NPR | MP
Npre 09 (0.29) - 1.0 (0.00) - 1.6 (049) - 3.0 (045) - 44 (059 -

Nobs 0.0 (0.00) | 0.0 (0.00) - 0.0 (0.00) | 0.0 (0.00) - 05(0.52) | 1.0(0.25) - 1.0 (0.00) | 0.5 (0.50) - 0.6 (0.49) | 0.0 (0.00) -

L, (m) 8401 | 19144 | 178(@3) | 85(0.10) | 18.1(08) | 173 (09) | 1L2(05) | 296 (10.) | 37.6 (72) | 139 (09) | 372 (78) | 356 (0.4) | 237 (0.76) | 593 (3.1) | 559 (4.0)

TABLE III: Results from real-world trials. Each cell lists the mean and the standard deviation over 5 trials per scenario.

Scenario m=3 | m=4 m=>5 m=6 | m=8

Algorithm | RELOPUSH | NPR | MP | RELOPUSH | NPR | MP | RELOPUSH | NPR | MP | RELOPUSH | NPR | MP | RELOPUSH | NPR | MP
Nioss 0.0 (0.0) ‘ 0.6 (0.49) ‘ 1.0 (0.0 ‘ 0.0 (0.0) ‘ 0.6 (0.49) ‘ 1.0 (0.63) ‘ 0.0 (0.0) ‘ 0.4 (0.49) ‘ 0.8 (0.75) ‘ 0.2 (0.40) 1.4 (0.49) ‘ 1.2 (0.40) ‘ 0.2 (0.4) ‘ 2.0 (0.63) ‘ 1.6 (0.49)
Te (s) | 796.6 (0.07) | 114.4 (0.49) | 1040 (4.23) | 121.7 (0.32) | 137.4 (1.05) | 133.7 (0.37) | 148.1 (0.66) | 154.0 (1.46) | 2358 (1.71) | 2562 (3.08) | 198.9 (2.74) | 182.97 (1.20) | 274.4 (0.33) | 3149 (2.28) | 285.9 (1.40)
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Fig. 8: Average planning time across scenarios, shown in loga-
rithmic scale. ReloPush scales well with the number of objects
compared to baselines.

nominal instances of Fig. 6. To evaluate the robustness of
our complete architecture, we executed the same scenarios
in a physical workspace on a real MuSHR [32] robot. To
ensure fairness in real-robot experiments, we chose instances
where all algorithms were successful in planning. We ran
each scenario 5 times per algorithm.

B. Results

Planning Performance. ReloPush dominates baselines in
success rate and planning time (see Table I, Fig. 8), with the
gap becoming more pronounced as the clutter (number of
objects) increases. This happens because increased clutter is
more likely to lead to non-monotone instances. For example,
most m = 6 instances are non-monotone because two objects
overlap with goals of other objects. Since MP can only
handle monotone rearrangements, it fails more frequently
in these harder instances. It is also worth observing that
kinematic constraints make some instances harder to solve
regardless of the number of objects. For example, some of
the m = 3 instances are challenging because o3 is situated
so close to its goal 0§ that the optimal path connecting them
goes out of the boundary. In contrast, ReloPush handled
this scenario effectively via prerelocation. Table II provides
intuition on the planning decisions that ReloPush made en-
abled increased performance. We see that as clutter increases,
ReloPush makes increasingly more workspace modifications
(prerelocations and blocking-object removals).

Real Robot Experiments. ReloPush successfully com-
pleted all trials, dominating baselines in terms of execution
time (see Table III). ReloPush never lost contact with any
objects, in contrast to baselines. One reason for that is that
ReloPush maintains low pushing path length (for better or
similar total path length) as shown in Table II. The shorter
the pushing distance, the lower the risk of losing the object
due to model errors and uncertainties. By accounting for

(a) MP (b) RELOPUSH

Fig. 9: Paths generated by MP (a) and RELOPUSH (b) for the
m = 6 scenario. Squares and circles represent respectively start and
goal object poses. Continuous lines represent planned paths with
pushing segments shown in yellow. RELOPUSH plans substantially
shorter pushing segments to minimize the risk of losing contact
with an object during execution.

this during planning through prerelocations (see Fig. 9),
ReloPush reduces the burden on the path tracking controller
which will inevitably accrue errors during execution (the
same path tracking controller was used for all algorithms).
A video with footage from our experiments can be found
at https://youtu.be/_ EwHuF8XAjk.

VI. LIMITATIONS

While ReloPush is capable of handling densely cluttered
problem instances, it assumes that at least one object is ini-
tially accessible by the pusher. Future work involves enabling
the pusher to “break” cluttered configurations through impact
to make space for planning. To achieve object stability
during pushing, we used sandpaper to increase friction at the
pusher-object contact, and locked the pusher’s steering below
the quasistatic limit, which further complicated planning.
Ongoing work involves learning a model of push dynamics
to relax planning and close the loop for push stability
during execution. ReloPush could be further improved by
optimizing the use of space when planning prerelocations
and when removing blocking objects. Extensions to this
work will study scenarios involving the rearrangement of
unstructured objects like debris, and construction materials.


https://youtu.be/_EwHuF8XAjk
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