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ABSTRACT

Robots must be cognizant of how their actions will be in-
terpreted in context. Actions performed in the context of
a joint activity comprise two aspects: functional and com-
municative. The functional component achieves the goal
of the action, whereas its communicative component, when
present, expresses some information to the actor’s partners
in the joint activity. The interpretation of such communi-
cation requires leveraging information that is public to all
participants, known as common ground. Much of human
communication is performed through this implicit mecha-
nism, and humans cannot help but infer some meaning —
whether or not it was intended by the actor — from most
actions. We present a framework for robots to utilize this
communicative channel on top of normal functional actions
to work more effectively with human partners. We consider
the role of the actor and the observer, both individually and
jointly, in implicit communication, as well as the effects of
timing. We also show how the framework maps onto vari-
ous modes of action, including natural language and motion.
We consider these modes of action in various human-robot
interaction domains, including social navigation and collab-
orative assembly.

1. INTRODUCTION

An important domain for human-robot interaction involves
collaboration on a joint activity, such as collaborative fur-
niture assembly (Figure 1). A great deal of attention has
been paid to what actions to perform [1, 16, 17, 27] and
when to perform them [9, 13, 35] in order to complete a
cooperative task. Often underappreciated, however, is the
implicit communication that occurs as a result of an ac-
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Please give the
blue robot the
white leg that is
on the black table.

Figure 1: Robots that collaborate with humans,
such as in an assembly task [22], must consider the
correctness of both the functional and communica-
tive aspects of their actions.

tion situated in context. We call behaviors that implicitly
communicate information communicative actions. Humans
are adept at drawing inference from observed actions and
common ground — in fact, they instinctively perform this
inference, thus reading additional meaning about the in-
tent of an action [8], and many people treat information
gleaned implicitly through inference as though it had been
stated outright. We argue that to be successful in a joint
activity with humans, robots must be cognizant of implicit
communication because humans will inevitably use it and
expect robots to comprehend its meaning. We further argue
that if a robot fails to attend to a human’s interpretation of
its own actions through the implicit communication mecha-
nism, then people will perceive the robot’s purely functional
actions as sending random implicit signals, sowing confusion.

Implicit communication is identified by various terms in
differing contexts. In robot motion, including reaching [10]
and social navigation [29], it has been termed legibility. In
linguistics, it has been termed conversational implicature [15],
for which we provide a primer in Sec. 5.1.1. In natural lan-
guage generation for HRI, it has been called inverse seman-
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tics [22]. In each of these cases, the meaning is extracted
by leveraging common ground. The goal of this paper is to
unify these separate works by explicating a common math-
ematical framework that underlies all of them.

Extending an earlier workshop paper [20], we contribute:

e a unifying mathematical framework describing how and
why people implicitly communicate information on top
of functional behaviors,

e formal expressions for encoding and decoding commu-
nicative actions, and

e collected example applications to illustrate the theory.

2. WHY IMPLICITLY COMMUNICATE?

Humans are able to express a multitude of ideas “in code”,
by means other than explicit natural language statements.
Motivations for implicit communication include efficiency,
tact, group cohesion, and social bonding. In this section,
we give examples of several categories of implicit communi-
cation. Message categories include expressing intent, coor-
dinating plans, and conveying information. Broadly, these
categories all fulfill the role of setting expectations, and we
consider each separately.

Social navigation is among the most superficial forms of
interaction, yet it is rife with implicit communication. In
social navigation, the objective is to avoid collision with co-
inhabitants of the space and reach one’s destination. Com-
bined, these objectives comprise the navigator’s intent. Col-
lision avoidance without intent expression is only the barest
definition of correct navigation — it alone would not be judged
as competent behavior by fellow pedestrians [31]. Compe-
tence demands that we convey our intended trajectory to
nearby observers. We trust in return that they will convey
their intent to us. Such intent-expressive actions minimize
the global uncertainty about future motions of the agents
(humans or robots) in the scene, leading to smooth and sta-
ble motion. We borrow from Barbalet [2] the definition of
trust as “the confidence that another’s actions will corre-
spond with one’s expectations.” In the absence of social
trust, people begin to behave defensively, and the efficiency
of motion drops globally in response.

Coordination among team-mates engaged in a joint activ-
ity requires setting expectations of future actions. Consider
the simple example of Steve and Cathy assembling furni-
ture together, in which a number of screws must be inserted
and tightened. Steve might pick up the screwdriver, which
achieves the functional objective of readying Steve to tighten
screws. In context, the action also implies that Cathy should
gather screws for insertion in order to help. Since Steve
is cooperative, Cathy knows that once she begins to insert
screws, Steve will fulfill his implicit promise to tighten them.

Beyond forecasting actions, team-mates might also try to
convey information about their capabilities. Human inter-
actional expectations are broadly governed by a common set
of human functional and social capabilities, whereas humans
are largely uninformed about a robot’s true capabilities.
Therefore, robots will likely find themselves being judged
according to the wrong standards. Although humans show
patience for robots that fail under the right conditions, a
robot that seldom works as expected will likely not remain
in use, even if the failure is one of expectations rather than
capabilities. Properly setting expectations allows human
team-mates to avoid being disappointed by robots [5, 23,
25].
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3. FRAMEWORK

In this section, we describe a framework for implicit com-
munication, modeled as a single-shot act.

3.1 Definitions

In coordinated activities, Clark [6] distinguishes among
several related concepts. A joint activity engages a group
of two or more agents in acting together toward a common
goal. Examples include a marriage ceremony, a classroom
lecture, and a football game. Within the context of a joint
activity, participants perform joint actions, which continu-
ously unfold over some period of time. A specialization is
the joint act, which is a one-shot joint action. For example,
in the joint activity of playing golf, yelling “fore!” is a joint
act by which the speaker warns any listeners of a wayward
flying ball (their avoidance response, in contrast, is an indi-
vidual act, performed without consideration of how it will
affect the group). The fact of an act being joint or individ-
ual is purely a matter of the mental state of the involved
agent(s).

Participation in a joint action may be asymmetric — for
example, speech is a joint action involving a speaker and
listener. Note that the listener actively participates by com-
prehending and back-channeling (nodding, saying “uh-huh”,
etc.). Knowledge comprises information believed by an agent
to be true and is collected into a set of facts, each with
associated confidence. Compulsory asymmetry occurs in a
joint act or action when one individual, the actor, shares
knowledge with one or more observers. Thus, an important
aspect of the joint action is to communicate information.
Frequently, an actor embeds information implicitly in an
otherwise purely functional action as part of the joint activ-
ity to perform implicit communication.

Any communicative action will be perceived by an ob-
server with a certain level of surprisal, which is an encoding
of how probable the observer believes the action to be given
the context. As Hohwy [19] states, surprisal is a declining
function of probability: the higher an observer’s surprisal,
the more improbable the observer believes the action to be
in the given context; the lower an observer’s surprisal, the
more probable the observer believes the action to be in the
given context. Common-sense knowledge and a shared un-
derstanding of the context allows an actor to gauge how
surprising her action will be to an observer, which in turn
shapes her choice of action depending on the information
she would like to convey. In the remainder of this sec-
tion, we show that greater surprisal corresponds with a more
strongly-conveyed message (i.e. the action is more meaning-
ful).

3.2 Foundations

The interplay of two sets is at the core of the framework.
A comprises all possible actions, whereas M is composed of
all possible facts about the world.

In the course of a joint activity, an agent performs a se-
ries of actions (including single-shot acts) a*, a?,...,a™ € A.
Each action accomplishes both functional and communica-
tive goals to varying degrees. Let Ay C A be the set of
(possibly many) different ways of accomplishing the func-
tional goal of the action. Thus, Ay can be thought of as a
subgoal of the shared goal of the joint activity.

An agent Q performs actions in a context M < comprising
a set of facts m1,ma, - € M2 C M that capture informa-
tion about the individuals’ knowledge. Only by leveraging
this context can implicit communication occur. M< ex-



presses Q’s beliefs about the world, including the state his-
tory of all agents in the joint activity, the observable scene,
properties of objects within it, and common-sense knowl-
edge. An individual fact m € M2 can have an associated
confidence, thus allowing facts in M < to be added, removed,
or changed following the observation of an action.

M€ is divided into several components. Knowledge that
all participants in an interaction know they all share is public
knowledge, M, also called common ground. Other knowl-
edge is not known to be public; agent Q’s private knowledge
is denoted Mﬁw Q may be aware that a subset of the other
agents know fact m € Mﬁm. It is even possible that every
agent in a joint activity privately knows m. In both cases,
m ¢ M,y unless all agents are all aware that m is shared
by all. Q’s total knowledge M < is equal to M, U Mﬁw

Finally, the distribution P(a|M) describes the likelihood
that a specific agent may next perform action a in the spe-
cific context M. Even if we restrict the scope of a to actions
that accomplish a particular goal, there may be a set of pos-
sible actions (Ay C A) to choose among. Some of these
actions will be preferred over others for reasons of efficiency,
simplicity, or custom.

Posit that the following common understandings are agreed
upon by all participants in the joint activity:

o the set of alternative actions Ay that would accomplish
a functional goal

e the common ground context model My

e the action distribution P(a|M) (for plausible M C M)

3.3 Implicit Communication Criteria

The goal of agent Q is to perform an action @ € Ay that
satisfies functional goals while also communicating fact m €
Mp%w. However, it is not always possible to communicate
an arbitrary fact m implicitly, nor is it always possible to
communicate implicitly via an action a.

The key idea is for the actor Q and observer R to lever-
age the common understandings in order to achieve implicit
communication. @ selects an action that is surprising to
R, i.e. perceived by R as improbable in the given context.
However, R does not treat the improbable a as a fluke —
rather, it triggers her to seek an explanation in the form of
a previously-unknown fact m that resolves the surprise. For
R to correctly interpret Q’s intended meaning, we propose
that action @ and fact i must meet four implicit communi-
cation criteria:

1. Ja,a’ € Aj: a4 #d

2. P(&|Mpub) < P(a'|Mpuz,) —€

3. P(a|Mpuw) < P(alrn, Mpus) — €

4. Ym € M\MpU{r}: P(m|a, Mpw) < P(n|a, Mpu)—

€

The € term incorporates variation caused by personal pref-
erence and noise. The strength of a given implicit commu-
nication is measured as the largest possible € satisfying the
criteria above. Criteria 1-2 govern the actor’s generation of
implicit communication, whereas criteria 3—4 govern the ob-
server’s ability to correctly interpret the intended meaning.
We speak of the fact 1 as the meaning of the action because
it explains Q’s choice of action. We next provide additional
insight into each of the criteria.

Criterion 1 requires that there must be at least two fea-
sible, distinct actions that accomplish the functional goal,
but preferably there are many more. An example of Ay
that violates this criterion is placing a telephone call. Ne-
glecting timing and caller ID, there is only one way to make
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somebody’s telephone ring, leaving no room for a surprising
choice of action.

Criterion 2 triggers the observer to search for an explana-
tion of why the actor chose action a over the more obvious
choice, a’. This criterion fails in situations where there does
not exist an action & that is a priori substantially less prob-
able than others. An example situation that violates it is
one’s first time visiting a clown convention, where normally-
improbable actions are expected and hence unsurprising.

Criterion 3 requires that the fact m will be easy for the
observer to verify as an explanation of a. That is, @ is unsur-
prising when m is known. A well-known historical violation
of this criterion was John Hinckley, Jr.’s attempted assas-
sination of President Ronald Reagan in order to gain the
favor of actress Jodie Foster — it is unclear how shooting the
president is intended to convey infatuation.

Criterion 4 states that no other inferred meaning m is
equally or more likely than the intended explanation 7.
There are many example violations of this criterion in the
form of hand gestures that take different meanings across
cultures and geographies. One case in point is a gesture that
variously signifies a Satanic association, infidelity, and a col-
lege football team in Texas. All three forms have famously
been used by politicians. Only by understanding each indi-
vidual actor’s Mp,, at the time he made the gesture can we
disambiguate among the three meanings.

3.4 Understanding and Generation

Suppose that an agent Q hopes to convey some informa-
tion, m € MI,QMU, to agent R without resorting to disclosing
it explicitly. Q selects an action & consistent with the im-
plicit communication criteria, and R determines a to be an
improbable action given what he knows. R, believing Q
to be rational, hypothesizes that there must be some un-
known factor 7 that explains seeing Q perform a. R thus
searches over a set of plausible facts M and chooses m to be
the fact with the highest posterior probability given a and
Mpup. Maximizing this probability minimizes the surprisal
that resulted from Q performing a, which in turn causes a
to become increasingly stronger evidence for R’s hypothe-
sis [19]. Hence, upon seeing a, R proceeds to infer
m < argmax P(m|a, Mpuw),

me

(1)

and thus R concludes that m € Mﬁw, i.e. Q believes m to
be true. Using Bayes’ rule, we can re-express (1) as
P(a[m, Mpu)P (m|Mpus)
P(a[Myur)
=argmax P(a|m, Mpus)P(m|Mpu).
meM

m ¢<—argmax
meM

Note that the prior P(m|Mpu) serves to prevent “conspir-
acy theories” that would otherwise result when noise gets
mistakenly interpreted as signal. That is, the fact being
communicated must have a reasonably likely prior proba-
bility. For example, if Bob looks up at the night sky and
sees a star twinkling, he is unlikely to attribute it to a UFO,
given that the prior probability of discovering intelligent ex-
traterrestrial life is small and that there is a more plausible
explanation rooted in turbulence of the atmosphere.

Next, we turn to the generation problem. The structure of
the generation problem is identical to understanding, except
that we now search over actions instead of facts,

a « argmax P(r|a, Mpup).
a€Ay

(2)



Predictable

P(alM,.)

Legible

a' a€d, a >
(a) A likely action such as a’ is termed predictable, whereas
we say that an unlikely action a is legible. See Section 5.2.1
for a full discussion of predictability and legibility. Since
G is rarely observed in context My,;, the observer infers
that it probably was selected specifically to send a mes-
sage.

P(alrit,M,,;)

P(alMy, )| e
a' a€A, a

>

(b) By performing legible action d, an agent implicates
the new fact " because knowledge of that fact changes
the shape of the distribution, causing & to become a
predictable action.

Figure 2: These plots illustrate the inference mechanism described in Section 3.4 and its effect on P(a|Mpuw).
Among the set of actions a € Ay that accomplish a task, each can be assigned a likelihood of being observed
in context. Actions with high likelihoods of P(a|Mpub) are deemed predictable, low ones legible.

Applying Bayes’ rule again, we can re-express (2) as

P(al|rm, M,.)P(m|M,
& «argmax (], Myup) P (17| Mpus)

acAy P(a’|MPub)
=argmax Plali, Myu)
acAy P(a|Mpub)

The resulting expression selects the action for which con-
tributing 7 to the common ground boosts P(a|Mpus) by the
greatest amount. See Figure 2 for an illustration.

We expand on these ideas and provide examples in Sec-
tion 5, but first we broaden our discussion to include implicit
communication occurring over time and in service of joint
goals.

4. ACHIEVING JOINT GOALS

In a joint activity, rational agents interact with each other
and make decisions towards achieving joint goals. These
goals could range from completing a collaborative assembly
task to smoothly avoiding each other while navigating in a
hallway. Relying only on implicit communication to achieve
joint goals requires the establishment and reinforcement of
trust. Implicit communication leverages trust to influence
the observer’s belief and converge to a consensus that is
beneficial for the accomplishment of a joint goal. In this
section we state our model for trust and propose an index for
monitoring its evolution in order to inform decision making.

4.1 Trust

Ordinarily, participants in a joint activity act rationally
and cooperate to achieve shared goals [18]. This policy for-
bids deception and supports the assumption that the com-
mon understandings (Section 3.2) are shared by all partic-
ipants. Given the great diversity of knowledge and experi-
ence among people, however, this assumption is perhaps too
strong to apply universally.

In particular, during interactions with strangers, we may
be unfamiliar with one another’s judgments regarding Ay,
Mpus, and P(a|Mpu). If we define trust as confidence in
another agent’s future actions [2], then it is natural for one
agent to restrict their trust of another based on the limits of
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common understandings among the individuals, even when
all agents behave rationally.

Another obstacle to trust is discrepant beliefs about facts.
We allow facts about the beliefs of others to enter Mpys.
Thus, it can simultaneously be part of the common ground
that G believes mY and that H believes mH, even if m9
and m™ conflict. G and H are then free to leverage either
of these facts in the generation and understanding of im-
plicit communications between them. Epistemic logic [11]
provides tools for representing and analyzing such scenar-
ios. Each conflicting fact introduces additional uncertainty
into the communication process because the observer must
infer which fact the actor premised the communication upon.
Thus, trust degrades with the number of discrepancies among
beliefs within a joint activity. Beyond some limit, implicit
communication becomes impossible.

4.2 Consensus

In a joint activity, agents take actions with functional ef-
fects (which contribute to reaching the joint goal) but also
with communicative effects. One category of communica-
tion, conveying intentions, serves to convey a preference or
desire regarding a joint strategy S for accomplishing the
goal. The joint strategy can be thought of as the sequence of
subgoals of the joint activity, A(J)c, A}, ..., A%, and is drawn
from the set of all possible strategies S.

A consensus for each subgoal in the joint strategy may
unfold gradually or abruptly during the course of the joint
activity. As the agents act, the public knowledge My is up-
dated along with the agents’ beliefs regarding the emerging
strategy P(S|Mpw). Under the assumption of rationality,
as formulated in our trust model (Section 4.1), a group of
competent agents taking actions bearing implicit communi-
cation signals will be able to achieve consensus over the joint
strategy S. This essentially means that P(S|Mpus) (which
we assume is shared by all agents) will converge to a dis-
tribution that clearly indicates the emerging joint strategy.
The entropy of this distribution is a measure of that conver-
gence.

4.3 Receptivity

In many joint activities, time and timing are critical at-
tributes of an action. Timing itself often conveys mean-



ing, which we therefore consider as an attribute of an action
G € Ay. Another important aspect of timing is its role
in choosing whether (and when) to implicitly communicate.
Participants in a joint activity are not equally receptive at
all times to certain forms of implicit communication, partic-
ularly with regard to consensus over the joint strategy.

When participants in a joint activity lack consensus about
a joint strategy, they cannot coordinate effectively to achieve
shared goals. Rational agents therefore strive to reach con-
sensus as early in a joint activity as possible in order to
maximize coordination efficiency. Consequently, the bulk
of implicit communication for consensus should occur to-
wards the beginning of the joint activity. As a joint strategy
S* emerges and consensus is reached, the agents might fa-
vor more predictable, less communicative actions, or they
might utilize the implicit communication channel for other
purposes. More generally, the implicit consensus formation
aspect of joint actions may wax and wane according to the
group need. Consequently, there arises the need for mon-
itoring (1) the state of consensus P(S|M,.) and also (2)
how receptive the group of agents is to the communicative
signals being transmitted.

We formalize this monitoring process by introducing a Re-
ceptivity score, as

Receptivity = — Z P(S|Mpub) log(P (S| Mpus))
ses

®3)

which is the information entropy of the distribution over
joint strategies, given the common ground, P(S|Mpus). Re-
call that common ground includes the action history within
a joint activity. Intuitively, receptivity measures the willing-
ness of individuals in a group to update their beliefs about
the joint strategy, inversely proportionate with clarity. Since
Mpys is sequentially updated over time, receptivity reflects
the way the agents incorporate observed communicative sig-
nals into their own actions. The lower a receptivity score
gets, the closer the agents are to a consensus over a joint
strategy S*. To avoid second-guessing a settled joint strat-
egy, an observer suppresses strategy changes of a larger mag-
nitude than the current receptivity level.

A consequence of a decline in receptivity is that agents
can be less expressive when it drops, since other agents will
likely ignore the inputs. In a scene with engaged competent
agents, receptivity is expected to decrease rapidly, signifying
a consensus in the joint activity. This decrease will influence
the balance between the functional and communicative as-
pect of actions taken, shifting the focus of decision making
towards the functional component. Beyond some threshold
drop in receptivity, agents have become sufficiently certain
about the consensus strategy S* that they may even ignore
their partners using civil inattention [21] to reinforce the
previously agreed strategy. This behavior involves physi-
cally looking away, “so as to express that [one] does not
constitute a target of special curiosity or design” [12]. At
this point, only a major modification in the strategy will
penetrate an agent’s civil inattention.

5. CASE STUDIES

In lieu of generating new experimental results, which would
apply to a single domain and communication modality, we
present examples of how implicit communication has been
modeled and enforced by several communities in various col-
laborative contexts and discuss how their frameworks align
with our unifying framework for implicit communication.
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5.1 Implicit Communication through Natural
Language
Speech acts are among the richest functional actions in
which to embed implicit communication.

5.1.1 Implicature

In this section, we give a brief background on conversa-
tional implicature. We seek to draw parallels between im-
plicature and other methods of implicit communication of
interest in robotics. Implicature comes from pragmatics,
the linguistics subfield that studies the usage of language in
context. Basic meaning that is expressed and understood by
a speech act is achieved by entailment — that is, ideas that
logically and unavoidably follow from the words chosen by
a speaker.

With implicature, in contrast, the speaker implicates (i.e.
implies or suggests) an idea without explicitly stating it. It
is a frequent phenomenon in English, first described by Grice
[15]. Consider this example from Lappin and Fox [24]:

Ann: Do you sell paste?
Bill: T sell rubber cement. (a)
implicature: Bill does not sell paste. ()

A test for conversational implicature in particular is whether
it is cancelable — that is, does there exist some phrase that,
when appended to the sentence, cancels the meaning of the
implicature? From the above example, a phrase that cancels
Bill’s implicature is “I sell rubber cement, which is what you
really need for your application.” An implicature, once can-
celed, implicitly communicates nothing. The added phrase
explains the initial phrase, thus increasing P(a|Mpw) and
violating implicit communication criterion 2.

When it comes to dialog, people have varied and complex
motives for implicating meaning rather than entailing it, in-
cluding politeness, sophistication, succinctness, and social
group cohesion. A detailed consideration of these objectives
is beyond the scope of this paper.

Grice’s cooperative principle states, “Make your conversa-
tional contribution such as is required, at the stage at which
it occurs, by the accepted purpose or direction of the talk
exchange in which you are engaged” [15]. Indeed, the coop-
erative principle bears more than a passing similarity to the
pedestrian bargain of Wolfinger [36], which entreats one to
behave competently and also to trust others to behave com-
petently. These principles are both forms of the rational
actor assumption [18].

A vital component of conversational implicature is pro-
vided by the four Gricean Maxims, which describe speech
that obeys the cooperative principle. The four maxims are

1. Maxim of Quantity: Make your contribution as infor-
mative as is required (but not more so).

2. Maxim of Quality: Make your contribution one that is
true.

3. Maxim of Relation: Be relevant.

4. Maxim of Manner: Be perspicuous. Avoid obscurity
or ambiguity; be brief and orderly.

Other maxims have also been proposed, such as “Be po-
lite.” Because adherence to the cooperative principle is as-
sumed, utterances can be interpreted in light of these max-
ims. A speaker can therefore deliberately flout one of the
maxims (an improbable action, @) in order to convey that
he is employing implicature. Returning to the previous ex-
ample, Ann must apply the following inference steps to con-
clude that Bill does not carry paste.



(a) Contextual premise: it is mutual, public knowledge
that Bill has complete knowledge of the items he sells.

(b) Contezxtual premise: there is no contextual relationship

linking sales of paste and rubber cement (inclusive or

exclusive).

Assume Bill follows the cooperative principle and max-

ims.

By (a), Bill can fully resolve Ann’s question, and by

(c), he will.

Only the propositions that Bill does or does not sell

paste can completely resolve the question.

By (b), there is no way to infer from Bill’s answer the

proposition that he does sell paste. The cooperative

principle forbids obfuscation. Thus, Bill has flouted

the maxim of relevance.

(g) Therefore, we conclude that Bill does not sell paste.

Lines (d)—(g) comprise the narrowing down and resolution
of the search for meaning in Equation (1).

Conversational implicature is absent when all the maxims
are satisfied. One indicates the use of implicature by select-
ing an action to deliberately flout one of the maxims — in
our example, Bill flouts the maxim of Relation.

Sometimes, two maxims conflict and cannot both be sat-
isfied with a single utterance, in which case flouting one or
the other maxim is forced. An example of the latter occurs
in the following exchange:

Mark: Where is the cat?
Sue: The cat is in the hamper or under the bed. ()
implicature: Sue does not know where the cat is. (1)

Because Sue does not know where the cat is, providing either
location alone would violate the maxim of Quality. How-
ever, providing both locations conflicts with the maxim of
Quantity because the cat is in at most one of the stated loca-
tions. Flouting the maxim of Quality would violate implicit
communication criterion 2 because either location alone is
plausible. Thus, Sue chooses to flout the maxim of Quantity
in order to trigger Mark to search for an explanation.

5.1.2 Inverse Semantics

Though more direct than conversational implicature, the
simpler speech act of entailment is fundamentally described
by the same mathematics. Knepper et al. [22] present the
inverse semantics framework for robots generating natural
language help requests. Like most robot speech systems,
the framework strives for extremely literal communication.
However, it faces a problem of finding pithy, unambiguous
means of communicating its needs in an automated assem-
bly scene cluttered with parts that lack unique names. Since
words are complex and imperfect containers for meaning, the
careful selection of clear language to achieve entailment fol-
lows the same rules of generation as described in Section 3.4.

The core of inverse semantics is a forward semantics mech-
anism for understanding natural language, the Generalized
Grounding Graph (G?*) [32]. This structure takes in natural
language expressions A as inputs and returns their meanings
or groundings 7 as outputs.

The inverse semantics framework inverts G® to perform
generation by searching over the space of possible English
sentences, sorted from shortest to longest, and inputting
each to G3. Inverse semantics compares the output of G*
with the target grounding needed by the help request. The
search halts with the first sentence that attains over a thresh-
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old confidence match between the two groundings. The ex-
pression given for generation,

argmax P(y|X, ¢, M), 4)
A

strongly resembles our own framework’s Equation (2). Here,

¢ is a correspondence variable used to indicate the semantic

likelihood of a match between A and . Like our model,

M symbolizes the context model in which the meaning is

interpreted.

5.2 Communicative Motion

Besides natural language usage, the robotics community
has studied other types of actions. An especially expressive
action class for implicit communication is motion.

5.2.1 Legibility

Let us consider again the joint assembly activity in which
Steve and Cathy cooperate to build furniture. Many forms
of communicative action arise. One class of actions studied
recently by Dragan, Lee, and Srinivasa [10] involves reaching
motions. Among parts cluttering a table, Steve has to pick
up a particular one. The shape of his reaching trajectory
may or may not inform Cathy about Steve’s intent. A direct
reaching motion is predictable (high probability P(a|Mpus))
and therefore not communicative. A curved trajectory, in
contrast, helps Cathy to identify the target of Steve’s reach
before he gets there.

In general, assume that an actor Q is aiming at reach-
ing a goal G from a set of goals G in front of an observer
R. The agents share a model P(G|{) that probabilistically
attributes a goal G € G to an observed trajectory . The
actor can leverage this knowledge to design his trajectory in
a way that indicates his intended goal to the observer. Fol-
lowing the insights of Csibra and Gergely [8] regarding the
tendency of humans to interpret observed actions as goal-
directed (teleological reasoning), Dragan, Lee, and Srinivasa
[10] introduced the Legibility score to quantify the intent-
expressiveness of a trajectory & with respect to a goal G<:

foT P(GQ|§0—>t)f(t)dt
I f(t)dt

where T is the duration of the trajectory and f(¢) is a func-
tion that weights partial trajectories o+ higher in the be-
ginning and lower later. It should be noted that f(¢) is a
proxy for the role of the observer in reducing her receptiv-
ity (see Section 4.3) as Q’s intended goal G2 becomes more
certain to her. The model P(G|€) scores goals higher if they
can be achieved efficiently (with a low energy trajectory &)
and scores goals lower if they require higher energy.

The legibility score is essentially a weighted sum of the
probabilities that the observers assign to the actor’s intended
goal G2 throughout the whole trajectory &. Trajectories
of higher legibility tend to be more curved towards the in-
tended goal G, biasing the observers towards predicting
the actor’s actual goal, while biasing them against predict-
ing other goals. Note that a more curved trajectory is less
probable out of context due to the extra energy it expends.
As a result, it might be perceived as surprising. This sur-
prise would trigger a search for an explanation, which, in
the perceived context, would lead to the conclusion that the
actor Q is aiming at reaching the goal G<.

Legibility(§) =

()



P(ll ‘Mmb)

Figure 3: The red, navigating agent (human or
robot) selects an action a. Out of context (top),
the red agent (human or robot) is not avoiding an
obstacle, and so the probability of expending need-
less extra energy is low. In the case of an oncoming
blue agent (1), the likelihood of the oblivious action
P(ao|Mpw) is low due to social norms, despite being
low energy. Conversely, the normally-improbable
act of spending extra energy becomes probable in
this context. An observer who sees only the red
agent’s motion can infer m from observing as.

5.2.2  Dynamic Legibility

Consider now the case of a dynamic environment, where
the agents are not explicitly collaborating but since the de-
cisions they make are coupled, it is beneficial for everyone to
mutually agree on a joint strategy. Assuming again no ex-
plicit communication, the only way agents are able to agree
on a strategy is to encode their understanding and prefer-
ences into their actions.

Social navigation constitutes a representative example of
this class of scenarios. Although humans might not often
realize that navigation in crowded environments is a col-
laborative activity, according to sociology studies [36], it is
established on implicit cooperation. Pedestrians follow and
reinforce the pedestrian bargain, a social convention com-
prising two foundational rules: (1) “pedestrians must behave
like competent pedestrians” and (2) “pedestrians must trust
that co-present others behave like competent pedestrians”.
Since the pedestrian bargain serves as a cooperative princi-
ple for social navigation, we may formulate a set of maxims
for motion that echo the Gricean Maxims of conversational
implicature,

1. Maxim of Efficiency: Be parsimonious.

2. Maxim of Motion: Do not collide with objects or ob-
struct another agent’s motion.

3. Maxim of Manner: Be perspicuous and orderly.

These maxims readily come into conflict where multiple agents

are present. Much as in the case of implicature, the actor
will choose to deliberately flout one of the maxims — typically
the maxim of Efficiency — in order to obey the cooperative
principle. It is only by considering the collision-avoidance
context that an observer is able to appreciate that by tak-
ing an exaggerated trajectory such as as in Figure 3, the
global welfare is improved, as measured by increased energy
efficiency and decreased uncertainty.

Enforcing the pedestrian bargain leads to a consensus over
a mutually beneficial joint strategy that allows everyone to
comfortably reach their destinations. The agents contin-
uously monitor the progress toward consensus and adjust
their decision-making accordingly. Once consensus appears

289

to have been reached, receptivity drops to zero as pedestri-
ans initiate civil inattention [12, 21]. Following this mode
switch, agents look away from one another as a signal that
they have stopped actively avoiding each other and will in-
stead follow their previous planned collision-free path.
Mavrogiannis and Knepper [28, 29] present a recent nav-
igation framework that reproduces the implicit communi-
cation of social navigation. They model consensus S as a
topological joint strategy using braids [3], and they develop
a game-theoretic decision making policy corresponding to
a utility function that compromises between efficiency and
implicit communication. This utility function is defined as:

u(a) = AE(a) — (1 — X\)H(a) (6)

where A is a weighting factor, E represents the efficiency
of an action a and H is the entropy of the agents’ belief
regarding the emerging strategy S:

H(a) = - P(S|Z",M)log P(S|Z", M) )
ses

with Z* comprising Z (the state history of all agents so far),
augmented with the action in consideration a and M being
the context.

Picking actions that maximize the utility leads to a quick
decrease in the uncertainty regarding the global joint strat-
egy (i.e., how each agent will avoid each other), while ensur-
ing progress towards the agent’s destination. The selection
of actions with a strong communicative component, espe-
cially in the beginning, was shown to reduce the likelihood
of livelocks or deadlocks.

6. OTHER EXAMPLES

Teams exchange implicit information in cooperative games
when the rules forbid free exchange of information. For ex-
ample, the bidding conventions of contract bridge allow part-
ners to exchange information about the respective strengths
of their hands and arrive at an appropriate contract.

Finally, among married couples, this type of implicit com-
munication eases over time across all modalities (speech, ges-
ture, gaze, etc.) because spouses develop extremely sensitive
models of P(a|Mpus), due to familiarity. Remarkably sophis-
ticated notions can be conveyed between spouses by careful
action selection in almost any context. We have considerable
work remaining before robots can achieve a similar level of
understanding of people.

6.1 Tact

Implicit communication is also the primary tool of tactful
communication, as it alleviates the risk of awkwardness due
to misunderstandings about what facts the observer already
knows. Reflecting on the implicit communication criteria
given in Section 3.3, an attempted implicit communication
of a fact that the observer already knows does not even seem
like implicit communication — it would come across as a pre-
dictable, functional action. In this case, criterion 3 is clearly
violated because m € My, and criterion 2 is probably also
violated because a@ would seem likely.

To offer a concrete example of how speakers leverage im-
plicit communication to achieve tact, consider a married cou-
ple discussing dinner plans:

Jack: Remember, my friend Irving is coming for
dinner.
implicatures: Irving is vegetarian; Irving needs



to be served a vegetarian meal.

Kate: Let’s make my mother’s lasagna recipe.
implicatures: Kate knows that Irving is vegetar-
ian; Kate’s mother’s lasagna recipe is vegetarian;
the recipe satisfies Irving’s need for a vegetarian
meal.

Observe that this exchange can be read at two levels. If both
parties are oblivious to the implicature because the sentences
are judged predictable, then it is a simple, matter-of-fact
dialog.

The statements can also be read as implicature. In both
cases, the implicated statements are things that the listener
should have already known. Only in the context of the cou-
ple’s normal conversation can we judge how unusual it is for
Jack to remind Kate about a guest (a fact she may be un-
likely to forget), or for Kate to make her mother’s lasagna
recipe.

Only if these events are atypical can they truly be re-
garded as implicit communication. However, they also serve
a tactful reminder function, in case Kate forgot about the
guest or Jack forgot that Kate’s mother’s lasagna is vege-
tarian. A failing memory may therefore cause an action to
be judged as unusual, in which case the reminder acts as an
implicature. Thus, a related virtue of implicit communica-
tion is that it allows the observer to maintain the pretense
of having already known a fact that they forgot.

7. PRACTICAL IMPLEMENTATION

Inference, both generation and understanding, is imple-
mented as a search over actions and facts, respectively. Tech-
niques are needed to streamline both search problems, due
to the intractability of the literal brute force search implied
by argmax in (1)—(2). Existing implementations of instances
of implicit communication employ AI search-pruning tech-
niques [22, 34] or restrict the action space Ay in order to
narrow the set of options under consideration [10, 29]. In
practical terms, the set of feasible actions Ay is typically
hard-coded for a domain, raising the possibility that it mis-
matches with some human’s expectation. Two people may
similarly encounter a mismatch in expectation about Ay.
Interestingly, the machinery described in this paper could
be used by a robot to infer that an observed human action
is intended to accomplish a (surprising) functional goal by
leveraging the context, leading to extension of Ay.

Another challenge is to build M., the common ground
model among agents. A complete model is often both unnec-
essary (since many facts in the agents’ shared knowledge are
irrelevant for the joint activity at hand) and infeasible (since
the task of modeling the full common ground presents a high
cognitive burden). As a result, M. need only consist of the
facts that are pertinent to the success of the joint activity.
For example, in the social navigation of Mavrogiannis and
Knepper [29], Mp.s might contain an updated belief regard-
ing the destinations and intentions of observed agents. Mpus
is therefore instantiated as the mutual understanding that
the agents involved intend to participate in the joint activity
along with shared knowledge about the kinds of actions that
agents will likely take to contribute to the activity [4].

For humans, Mp,, does not necessarily include all task-
relevant facts at the start of the activity. It is frequently
less costly to repair a misunderstanding that results from
not sharing a piece of information than to expend the effort
required to ground that piece of information through the
principle of least collaborative effort [7, 30]. Mpu is then
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updated interactively throughout the course of the joint ac-
tivity, either when new information about the intents of the
agents becomes publicly available or when the agents issue
a repair that helps align their own mental models of the sit-
uation (and in doing so adds to the common ground) [26].
Machine-interpretable ontologies using tools like RDF and
OWL address the general problem of managing and search-
ing Mpus, as exemplified by the KnowRob project of Tenorth
and Beetz [33].

Finally, the distribution P(a|M) is generally best mod-
eled through machine learning. The particular context in
which one takes an action affects the probabilities of observ-
ing various possible actions, often in complex ways. For
example, Knepper et al. [22] employ Tellex’s generalized
grounding graph (G®) [32]. Based on a conditional random
field, G® employs a set of correspondence variables to valuate
the correspondence probability of a given language phrase
and grounding concept. These learned relationships capture
concepts including objects, actions, and spatial relations.

8. DISCUSSION

Conversational implicature and legibility, though originat-
ing in different domains, are connected by techniques of en-
coding and decoding meaning using teleological inference [8].
These methods rely heavily on common ground to provide
clues about when a message is encoded on an action and
what information the message contains. The inference pro-
cess can be quite complex in real-life situations. Particularly
in the case of implicature, many rules must be brought to
bear in order to correctly interpret what is being implicated.
Several authors [14, 34] show promising early results in mod-
eling a simple form of implicature and performing inference
by model inversion.

8.1 A Call to Action

In the coming years, modeling of implied meaning, in-
cluding through implicature and legible motion, will become
an increasing focus within robotics — not least because hu-
mans already use these forms of implicit communication on
robots today. Humans are also already interpreting robots’
actions through the lens of implicit communication. Since
few robots are cognizant of the implicit meaning of their ac-
tions, today’s robots send random signals to humans. By
and large, humans are unable to interpret robot actions in
the purely functional manner that they are intended. Thus,
the robotics research community must find techniques to ef-
ficiently generate and understand implicit communication.

This direction will drive the need for improved modeling
of common ground. A major hurdle to performing these
inferences on robots in real-world situations is salience; to-
day, the robot must perform a fairly undirected, brute-force
search in order to discover which elements of the context are
applicable. Humans, in contrast, seem to learn filters and
partially pre-compute functions to expedite real-time infer-
ence in ambiguous situations. These processes are not yet
understood in humans, but they will need to be deployed on
robots in order to promote responsive behavior and avoid
major misunderstandings.
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