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Abstract— During in-hand manipulation, robots must be
able to continuously estimate the pose of the object in order
to generate appropriate control actions. The performance of
algorithms for pose estimation hinges on the robot’s sensors
being able to detect discriminative geometric object features,
but previous sensing modalities are unable to make such
measurements robustly. The robot’s fingers can occlude the
view of environment- or robot-mounted image sensors, and
tactile sensors can only measure at the local areas of contact.
Motivated by fingertip-embedded proximity sensors’ robustness
to occlusion and ability to measure beyond the local areas of
contact, we present the first evaluation of proximity sensor
based pose estimation for in-hand manipulation. We develop a
novel two-fingered hand with fingertip-embedded optical time-
of-flight proximity sensors as a testbed for pose estimation
during planar in-hand manipulation. Here, the in-hand manip-
ulation task consists of the robot moving a cylindrical object
from one end of its workspace to the other. We demonstrate,
with statistical significance, that proximity-sensor based pose
estimation via particle filtering during in-hand manipulation:
a) exhibits 50% lower average pose error than a tactile-sensor
based baseline; b) empowers a model predictive controller to
achieve 30% lower final positioning error compared to when
using tactile-sensor based pose estimates.

I. INTRODUCTION

In-hand manipulation is a prerequisite for many of the
tasks that are desirable for robots to perform. Tool use,
object articulation, and pick and place tasks will significantly
benefit from the ability to reposition, reorient, and exert force
on the object of interest within the robot’s hand. As the
robot attempts to execute a particular in-hand manipulation
skill, the appropriate control action at any point in time will
depend heavily on the pose of the object. Pose estimation
algorithms fuse the robot’s control actions and sensor obser-
vations across time in order to continuously track the pose of
the object. These algorithms must be provided with sensor
measurements that disambiguate the pose of the object in
order to perform well, but sensing modalities currently used
for in-hand manipulation struggle to continuously provide
such measurements. Here, we analyze the application of a
previously unused sensing modality - fingertip embedded
proximity sensors - for pose estimation during in-hand
manipulation (Fig. 1).
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Fig. 1: Our two fingered hand uses optical proximity sensors
to estimate the pose of a cylindrical object during a planar
in-hand manipulation task in which the robot must move the
object to a specific goal position. Each fingertip is equipped
with four optical distance sensing modules that have been
covered in a transparent elastomer. Left: Visualization of
the robot and object. Red lines emanating from the cyan
fingertips illustrate optical distance measurements. A particle
filter (particles shown in orange) uses these measurements to
estimate the pose of the cylinder shown in blue. Right: The
real robot manipulating the object.

The effectiveness of a sensor used for object localization
is determined by its ability to measure discriminative fea-
tures of the object during manipulation. For RGB(D) image
sensors, these features are image pixels that correspond to
keypoints of the object or a fiducial attached to the object.
When these features are occluded from view, pose estimation
performance suffers. This is particularly an issue for in-hand
manipulation as the fingers will often block environment- or
robot-mounted image sensors’ view of the object.

Tactile sensing is the other most commonly used sensing
modality applied to in-hand manipulation. Its features consist
of contact measurements that are the result of an object’s
surface exerting force on the sensorized portion of the finger.
Tactile sensors can be made robust to the occlusion that
image sensors experience by being embedded into the contact
surface of the fingers. On the other hand, the ability of tactile
sensors to detect discriminative features is limited by the
fact that they require contact with the object in order to
make measurements. Even if the sensor has a high spatial
resolution [1]–[3], objects that do not conform to the sensor’s
surface (e.g. objects with high amounts of curvature) may be
difficult to localize. A sensing modality that improves upon
the two described here would be robust to finger occlusions
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Fig. 2: Optical proximity sensors provide measurements beyond the local areas of contact that reduce uncertainty in pose
estimation. a) Top down view of a two fingered hand with blue fingertips manipulating a green object. b) Zoomed in view
in which the red regions indicate object-fingertip contacts that would be detected by tactile sensors. While detection of
these contacts results in the object being well localized in the horizontal direction, the translucent green area illustrates the
large pose uncertainty in the vertical direction (assuming the geometry of the object is known apriori). c) Optical distance
measurements illustrated by red rays emanating from the fingertips detect a greater portion of the object and thereby
significantly reduce pose uncertainty in the vertical direction.

and also be able to measure object geometry beyond the local
areas of contact.

Proximity sensors successfully capture discriminative ge-
ometric features for pose estimation where previous sensing
modalities fail. The robot’s fingers can heavily occlude the
object from view of image sensors mounted to the environ-
ment or the robot itself, but proximity sensors are robust to
such occlusion by virtue of being embedded in the fingers
themselves. Tactile sensors embedded in the fingers are also
robust to occlusion, but require contact in order to detect
the object. Therefore, it can be difficult for tactile sensors
to localize objects that do not conform to the sensorized
portion of the finger surface. Consider a scenario in which a
two fingered hand with slightly rounded fingertips attempts
to manipulate an object with flat sides, such as in Fig. 2. In
such a scenario, contact detection indicates that the object is
within the robot’s grasp, but does not elucidate whether the
contacts are towards the top corners of the object, bottom
corners of the object, or somewhere in between. Proximity
sensors can resolve this ambiguity by sensing beyond the
local areas of contact, resulting in improved pose estimation.

In this paper, we evaluate the performance of proximity
sensor based pose estimation in the context of in-hand
manipulation. Specifically, we measure the pose estimation
accuracy throughout in-hand manipulation trajectories, and
quantify how well a control policy informed by these pose
estimates can move the object to a specified goal pose. The
insight that proximity sensors are particularly well-suited
to pose estimation for in-hand manipulation is rooted in
their ability to avoid occlusion by being embedded in robot
fingertips while also being able to detect portions of the
object that do not necessarily make contact with the fingertip
surface. These properties increase the likelihood that the
sensing modality will consistently observe discriminative
object features throughout the manipulation, facilitating
improved pose estimation.

We make the following contributions:
• Describe a novel two-fingered robot hand for planar

object manipulation with optical proximity sensors em-
bedded in its fingertips.

• Present the first demonstration (to the best of the
authors’ knowledge) of fingertip embedded proximity
sensors being used for pose estimation during an in-
hand manipulation task.

• Compare the accuracy of proximity sensing based pose
estimation versus that of tactile based pose estimation.

A supplementary video of this work is available here:
https://youtube.com/watch?v=Ct9k0mSmAYs

II. RELATED WORK

This section provides context for our work on proximity
sensor based pose estimation for in-hand manipulation. We
examine previous works on in-hand manipulation, focusing
on the sensing modalities that were used for object pose esti-
mation. We then discuss previous proximity sensors that have
been designed for robotic fingertips and their applications.

A. Pose Estimation for In-Hand Manipulation

Manipulation of an object inherently constrains its pose to
some degree. Even without exteroceptive sensing, a robot can
reason about how the configuration of its hand constrains the
object in order to estimate its pose with some amount of un-
certainty. Sequences of uncertainty-aware motion primitives
allow robots to perform in-hand manipulation without any
exteroceptive sensory feedback [4]. Such information can be
combined with constraints imposed by the motions of the
arm, gravity, and external contacts to estimate object pose
[5], [6]. While this approach reduces hardware requirements,
relying on the executed actions themselves to maintain small
pose uncertainty can make it difficult to achieve arbitrary
manipulations. Leveraging the constraints on the object’s
pose imposed by the robot’s hand is a useful principle, but
the use of exteroceptive sensing helps decouple accurate pose
estimation from the particular actions executed by the robot.



The use of image sensors for pose estimation have facili-
tated the execution of dexterous in-hand manipulations [7]–
[11]. This approach generally requires object mounted visual
fiducials and/or a spatially distributed array of cameras. Other
environments may not be able to fulfill such requirements,
resulting in occlusion and degraded performance.

On the other hand, fingertip embedded tactile sensors are
robust to occlusion. Maekawa [12] demonstrated one of the
earliest works in manipulating objects with rolling contacts
along a desired trajectory using tactile feedback at the fin-
gertips. More recent works have used tactile sensors to learn
model-free control policies for in-hand manipulation [13]–
[15]. Others have focused on using tactile measurements for
explicit pose estimation [16]–[18]. However, tactile based
pose estimation may struggle to localize objects that do not
conform to the surface of the fingertip.

B. Proximity Sensing

Proximity sensors provide a sense of “pretouch,” with a
range intermediate to that of image and tactile sensors. We
classify prior work on the proximity sensing modality for
robot hands based on the underlying sensing mechanism:
either acoustic, capacitance, or optical. While we describe
many works here, please see Navarro et al. [19] for a more
comprehensive survey of proximity sensing in robotics.

Jiang and Smith [20] develop acoustic pretouch sensors
embedded in the fingertips of a PR2 robot. They measure
proximity to objects by detecting changes in the ambient
noise spectrum inside of the sensor’s acoustic cavity. One
disadvantage is that the sensor fails to detect extermely soft
and light materials. Fang et al. [21] propose a bi-modal
acoustic-optical sensor using the optoacoustic effect.

Capacitive sensors extract information from the environ-
ment by measuring changes in capacitance between two or
more sensor electrodes. Such sensors can operate in both tac-
tile and proximity modes [22]. Wistort et al. [23] use electric
field pretouch as the feedback signal for closed loop control
in robotic manipulation tasks. Mayton et al. [24] extend this
principle for co-manipulation of objects between humans
and robots. Faller et al. [25] retrofit an industrial gripper
system with capacitive sensors for automated grasping of
logs in a forestry robot. Muhlbacher-Karre [26] integrate
capacitive sensing for active object categorization in robot
manipulation tasks. However, the performance of capacitive
sensors degrades when sensing objects with a low dielectric
constant such as fabrics, foam, and plastics.

Optical pretouch sensing methods are attractive because
of their precision and ability to detect a wide range of
materials. Guo et al. [27] proposed to perceive objects using
a transmissive optical proximity sensor composed of an
emitter and a receiver in a parallel gripper. Hsiao et al. [28]
use optical sensors for pose estimation using a probabilistic
model. Maldonado et al. [29] augment long-range vision
with optical sensors to obtain measurements of areas that
are occluded from the image sensor.

Yang et al. [30] demonstrate continuous manipulation
tasks using a time-of-flight (ToF) proximity sensor mounted

on a parallel gripper. Other works have developed optical
sensors encased in transparent, compliant materials that facil-
itate both proximity and tactile sensing during manipulation
[31], [32]. Sasaki et al. [33] successfully exploit ToF sensors
to increase the robustness of the positioning of a robot hand
during a grasping task. Optical sensors may fail to detect
objects that are transparent or highly specular. Methods
that have been proposed to compensate for variations in
reflectance include color calibration information obtained by
a vision sensor [34] and using a light-emitting diode with
emission phase that is robust to varying reflectance [35].

III. PROXIMITY SENSING FOR IN-HAND MANIPULATION

To investigate the value of proximity sensing for in-
hand manipulation, we deploy a complete system for object
manipulation under pose uncertainty on our custom two-
fingered robot hand. We first present the overall robot
hardware architecture, and then focus on our design of
compliant fingertips with embedded optical time-of-flight
proximity sensors. We then describe our implementation of
a particle filter that uses measurements from these sensors
to estimate the object’s pose, and conclude by detailing
the model predictive control policy that our robot used to
perform in-hand manipulation.

A. Two-Fingered Robot for In-Hand Manipulation

We developed a two-fingered robot hand capable of in-
hand manipulation in order to explore the use of proximity
sensors for pose estimation (Fig. 1). For each finger, a tendon
(consisting of 65 lb. max tension fishing line) is anchored to
the fingertip and then routed through the links of the finger in
order to be attached to a XM430-W350-R Dynamixel Servo
motor. Flexion of a finger occurs when its corresponding
motor pulls on the tendon, and springs embedded in each
joint extend the finger as the motor releases the tendon. Each
finger contains three revolute joints.

Although the fingers are underactuated, a unique feature of
the robot hand is that the rotation of each individual joint can
be blocked by a corresponding electrostatic brake, allowing
the motion of the joint to be decoupled from the motor
as desired. Electrostatic brakes leverage the electrostatic
attraction that occurs between two conductors at differing
voltage potentials. This attraction induces a perpendicular
frictional force that resists motion between the conductors.
Our electrostatic brake equipped joint uses a rack and pinion
to transform rotational motion of the joint into linear sliding
between the conductors, which optimizes conductor con-
formance in order to achieve significant braking capability.
More details of this joint design are available in [36]; for this
work, one only needs to note that the robot can engage any
combination of joints’ brakes in order to block the motion
of those joints. These brakes enable the robot to control the
motion of individual joints, allowing the hand to reach any
arbitrary joint configuration within the joint limits.

Each joint contains an AEAT-8800 magnetic encoder. The
encoders measure the angular position of each joint at a rate
of 30 Hz. The limits for each joint are from 0 to 90 degrees.



B. Compliant Fingertips with Embedded Proximity Sensors
Optical time-of-flight sensors possess a number of quali-

ties that facilitate the practical implementation of proximity
sensor based pose estimation. This type of sensor makes
easily interpretable (i.e. distance) measurements that are in-
sensitive to most object compositions and surface properties.
The ability to compactly manufacture such sensors allows
them to be embedded in compliant regions of the finger,
and this compliance aids the robot hand in maintaining a
grasp on the object. This subsection describes the design
and construction of our robot hand’s sensorized fingertips.

Four STMicrolelectronics VL6180x optical time-of-flight
modules are embedded into each of the robot’s fingertips as
shown in Fig. 3. The sensor modules of each fingertip are
positioned along a circular arc of radius 15mm at intervals of
25 degrees, and oriented such that their optical transmitters
point perpendicular to the arc’s tangent. Each sensing module
produces distance measurements at a rate of 30 Hz, which
are sent to a fingertip embedded microcontroller that provides
the measurements to the robot’s main computer via the same
communication protocol used to query the encoders.

After the fingertip’s embedded electronics are mounted
to a 3D printed substrate, this rigid skeleton is covered
by transparent, compliant polydimethylsiloxane (PDMS). We
design a mold for the fingertip that fulfills two critera:

• For each sensor module, the contact surface above
the module’s optical transmitter and receiver should be
shaped as a circular arc centered around the transmitter
in order to focus infrared light reflecting off of the inner
contact surface back towards the transmitter (as opposed
to towards the receiver). This results in better contrast-
to-noise ratio performance of the sensor.

• The contact surface should be at a distance above the
10mm minimum sensing range of the module (here, we
use a distance of 15mm).

Once a satisfactory mold has been 3D printed, the surface
is covered with two coats of Smooth-On XTC3D Epoxy. This
epoxy fills in the gaps between the individual 3D printed
layers and is necessary to produce a contact surface that is
optically transparent. The mold is then filled with a 10:1
silicone-catalyst PDMS mix, thoroughly degassed using a
vaccum chamber and pump, and cured for 24 hours. For more
details on this process, please see our previous work on the
construction of optical proximity-contact-force sensors [32].

C. Proximity Sensor Based Pose Estimation
By virtue of using similar measurement mechanisms,

many of the standard techniques applied to LIDAR based
localization in the context of mobile robots can be adapted
for proximity sensor based object pose estimation [37]. In
particular, we implement a particle filter for estimating the
pose of the manipulated object. Our encoder measurements
themselves provide a sufficiently accurate estimate of the
robot’s internal state, therefore our particle filter’s estimated
state xt only consists of the cylindrical object’s xy position.

Given N particles, our particle filter’s sensor model gen-
erates particle weights p(zt|xi

t) that represent the likelihood

Fig. 3: A compliant fingertip with four embedded optical
time-of-flight proximity sensors. Left: A visualization of the
fingertip design. PDMS (colored in translucent blue) forms a
compliant contact surface. Right: The constructed fingertip.

of sensor measurements zt occurring given each particle
hypothesis xi

t, where i ∈ {1, . . . , N}. Like other beam-based
sensor models, we assume that each individual sensor beam
measurement is conditionally independent of all of the others
given the underlying state:

p(zt|xi
t) =

M∏
j=1

p(zjt |xi
t) (1)

with M = 8 due to the robot having two fingers, each with
four sensing modules (see Fig. 3). The individual observation
probabilities are a weighted mixture of a Gaussian distribu-
tion representing the expected distance measurement with
noise and a uniform distribution representing the possibility
of a sensor glitch, communication error, unexpected detec-
tion, or other random effects:

p(zjt |xi
t) = η ·

(
w1 · N (zj∗t , σ2) + w2 · U(0, zmax)

)
(2)

where zj∗t is the expected measurement of sensor j given
the current encoder values, robot forward kinematics, and
particle hypothesis xi

t. Here, w1 and w2 are mixing weights
chosen according to the importance of the corresponding
term, and η serves as a normalizer to ensure that the sum
over the distribution is one.

Each time the robot executes an action, our particle
filter’s motion model propagates its particles according to the
expected change in position plus zero-mean gaussian noise.
The expected change in position is computed by executing
the action in a physics simulator for robotics. This simulator
is a key component of our model predictive control policy,
and is discussed in further detail in the following subsection.

D. Model Predictive Control for In-Hand Manipulation

We use model predictive control (MPC) to generate actions
for in-hand manipulation. Starting with the current system
state, MPC simulates a large number of action sequences in
order to find trajectories that will move the system towards
the goal state over the trajectories’ time horizon. By repeating
this process at each timestep, MPC provides adaptive control
that is robust to unmodeled dynamics.



Fig. 4: Representative in-hand manipulation trials using tactile sensor and proximity sensor based pose estimation. The blue
cylinder represents the object pose estimated by the particle filter (particles shown in orange). The green cylinder (heavily
overlapped by the blue cylinder, and most visible in images to the upper right) represents the ground-truth pose. The red
cylinder represents the desired goal pose of the object. Note that the visual fiducials are only used to estimate the ground-truth
pose; they do not affect the sensor based pose estimation nor the executed control policy. The left-most snapshots show the
initial pose for both trials, and the snapshots second from the left show when the cyan fingertips initially make contact with
the object. Subsequent snapshots show the progression of the manipulations. Top: A tactile sensor manipulation trial. In the
upper images, black spheres along the fingertip surface illustrate detected contacts. Here, pose estimation error pushes the
system into an area of the state space in which the controller can no longer make progress towards the goal. Bottom: A
proximity sensor manipulation trial. Red lines emanating from the fingertips illustrate proximity sensor measurements.

Given the current state st of the robot-object system and
the action at that the robot executes, our dynamics model
predicts the resulting next state st+1. The state st consists
of the six joint positions and velocities, as well as the
xy position and velocity of the manipulation object. The
action at is composed of the commanded positions of the
robot’s two motors, and the states of each of the six brakes
(on or off). While in general any combination of brakes
can be turned on, for this work we limit executed braking
configurations to be those in which exactly one of the brakes
in each finger is off. By reducing the number of possible
braking configurations from 64 to 9, it is more tractable for
the model predictive controller to explore the action space.
We use NVIDIA’s Isaac Gym [38], a GPU based physics
simulator, as a highly parallelizable dynamics model.

Our in-hand manipulation controller is an adapted version
of the model predictive path integral (MPPI) framework [39],
[40]. The standard MPPI controller generates a large number
of action sequences, simulates those sequences to obtain
corresponding trajectories and costs, and then outputs a cost-
weighted average of those action sequences for execution on
the real robot. However, this averaging does not make sense
for a hybrid action space for which the discrete variables
lack a Euclidean distance measure. Instead, we require each

action sequence to maintain a consistent brake configuration
throughout the corresponding simulated trajectory, and then
compute cost-weighted averaged action sequences for each
possible brake configuration. Initially, of the 9 outputted
action sequences, we execute the first action of whichever
sequence has the lowest cost. For subsequent time steps, we
only choose an action sequence corresponding to a different
brake configuration if it has a significantly lower cost (we use
a constant threshold percentage ϕ) than the cost of the action
sequence corresponding to the previous brake configuration.
Otherwise, we execute the first action of the action sequence
corresponding to the previous brake configuration.

At each time step, our MPPI controller simulates many
trajectories over a time horizon T . It computes a cost for
each trajectory that penalizes the fingers not making contact
with the object and object distance from the goal:

J(st, . . . , st+τ ) = c1 ·
t+τ∑
τ ′=t

I(sτ ′) + c2 · |xgoal − xt+τ | (3)

where I(sτ ) is an indicator function that returns the number
of fingertips not in contact with the object, and xgoal is the
desired position of the object.



IV. EVALUATION

We measure the performance of pose estimation for in-
hand manipulation with different sensing modalities. This
section discusses our experiment’s specifications and results.

A. Experiment Setup

We consider a planar in-hand manipulation task in which
the robot must translate an object from a known initial
location to a goal location. These locations are chosen to
be on the boundary of the robot’s manipulation workspace.
The object’s initial pose is 4.5cm to the left of the geometric
plane that symmetrically bisects the hand (see Fig. 4), and
4.5cm above the base of the fingers. The goal pose is the
reflection of the initial pose across the bisecting plane. The
object is a cylinder of radius 4cm and a height of 14cm.

When attempting the in-hand manipulation task, the robot
begins at a position in which all joints have a value of zero
(Fig. 4 on the left). It then uses a joint position controller to
move to a preset pose that corresponds to the robot making
initial contact with the object at the known initial pose. Once
contact has been made, the MPPI controller attempts to move
the object to the goal pose. A successful manipulation trial
ends when the horizontal distance from the object’s ground-
truth location (provided by visual fiducial localization) to the
goal location is less than 1mm. A trial ends and is considered
to have failed if the previous condition is not fulfilled within
60 seconds after first making contact with the object.

We measure the robot’s in-hand manipulation performance
when using pose estimation based on three different sensing
modalities. These three modalities are tactile sensing, prox-
imity sensing, and visual fiducial localization. For each of the
sensing modalities, we measure the distance between the goal
pose and the object’s pose at the end of the manipulation.
Fiducial localization also serves as a ground-truth pose
estimate during the tactile and proximity sensor trials in
order to estimate pose estimation accuracy throughout the
manipulation. Ten manipulation trials are undertaken for each
of the three sensing modalities.

We implement tactile sensing by artificially limiting the
range of the embedded proximity sensors to be just beyond
the contact surface of the fingertip. Although the sensors can
detect objects up to 255mm away, a tactile sensor would only
be able to detect objects at a distance less than or equal to
the distance from the sensor to the finger surface dtact max.
Therefore, all measurements greater than dtact max are trun-
cated to dtact max when in tactile sensing mode. We perform
this truncation for both the real observations zjt and expected
observations zj∗t of the particle filter.

B. Implementation Details

The algorithms described in Sections III-C & III-D are
simultaneously executed on a single desktop PC with an Intel
i7 Quad-Core CPU, 64 GB of RAM, and a NVIDIA Titan
XP GPU. Initial values for all of the following parameters
were chosen based on our intuition and then hand-tuned until
reasonable performance was achieved. Our particle filter used
1000 particles and produced pose estimates at a rate of 18

Hz. Its sensor model used parameter values σ = 5mm,
w1 = 0.95, w2 = 0.05. Although the distance from any
sensor to the fingertip surface is 15mm, we set dtact max to
a slightly larger 18mm to ensure that sensor noise does not
result in false negatives. Our MPPI controller simulates 297
trajectories over a time-horizon T = 10 at each time step. Its
cost function uses parameter values a1 = 0.1, a2 = 200, and
the MPPI hyperparameter λ is set to 0.1. Switching between
braking configurations is thresholded on a value of ϕ = 25%.
Controls are generated at a rate of 5 Hz.

C. In-Hand Manipulation Performance

Relative to tactile sensor based pose estimation, we found
that proximity sensor based pose estimation is more accurate
throughout the trajectory and results in more precise position-
ing of the object. We observed that the spread of the particle
distribution in the vertical direction is larger for tactile sensor
based pose estimation (Fig. 4). This is exemplified by the
second-to-last snapshot of the tactile sensing sequence in
which the distribution has bifurcated around two distinct
hypotheses. This may be due to the sensor data not being
sufficiently discriminative to determine whether the robot is
grasping above or below the diameter of the cylinder.

Across our experiments, we found that proximity sensing
enables better performance than tactile sensing. Proximity-
sensor based pose estimation achieves significantly lower
average pose error than tactile-sensor based pose estimation
(p < 0.001, Mann-Whitney U test). The average pose
error throughout the manipulation for proximity sensing was
2.7mm, less than half of the 5.5mm error observed for tactile
sensing (Fig. 5). The quality of pose estimation is also
reflected on the overall task performance. When using visual
fiducial or proximity sensor based pose estimation, the robot
was able to successfully complete all ten trials. However,
only five out of ten trials were successful when using tactile-
based pose estimation. For the five trials that succeeded, tac-
tile sensing based pose estimation trials resulted in 11.2mm
average final position error. In contrast, proximity-sensor
based pose estimation trials resulted in an average final
positioning error of 7.8mm across all trials, 30% lower than
that of tactile sensing, enabling also significantly lower final
positioning error compared to tactile sensing (p < 0.05, U
test). Furthermore, proximity-sensor based pose estimation
resulted in an average task completion time of 40.0 seconds,
18% faster than the 48.6 second average completion time of
(successful) tactile sensing trials. The complete statistics for
all experiments are listed in Table I.

It is also informative to examine how the pose error
evolves throughout the in-hand manipulation task. With the
exception of the very beginning of the task, proximity-sensor
based pose estimation has lower error than tactile based
pose estimation as shown in Fig. 6. We hypothesize that
the tactile modality does better at the beginning due to a
mismatch between the particle filter’s sensor model and the
actual sensor. The optical beams of the sensor model are
represented by beams with an infinitesimally small width,
but the real sensor’s detection zone takes the shape of a
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Fig. 5: Comparison between pose estimation sensing modal-
ities. Error bars correspond to one standard deviation. In-
creasing number of stars indicates higher significance levels
(p < 0.05, p < 0.01, p < 0.001) according to a paired U test.
a) The average pose error. b) The object’s final distance from
the goal. c) Time between initial contact and task completion.

TABLE I: The results of ten in-hand manipulation trials.

Avg. Pose Err. (mm) Success Goal Dist (mm) Exec. Time (s)

Fiducial - 10/10 7.3 ± 3.6 36.9 ± 9.1
Proximity 2.7 ± 0.4 10/10 7.8 ± 1.3 40.0 ± 10.0
Tactile 5.5 ± 1.6 5/10 11.2 ± 3.6 48.6 ± 10.0

cone. For the particular configuration in which the robot
initially makes contact with the object, the cylinder is just
barely within the conic field-of-view of one of the sensors.
This causes the sensor to return a measurement significantly
less than its max range, but the corresponding sensor model
expected measurement is at max range (because the beam
has no width). Tactile-based pose estimation is better able
to filter this out because its (truncated) max range is much
closer to the measurement returned by the actual sensor.
However, because the true sensor’s detection cone is quite
thin (with a radius on the scale of millimeters depending on
the distance from the sensor), this configuration in which
the object barely grazes one of the sensing cones does
not occur often throughout the overall manipulation. Once
the particle filter has coalesced around the true state by
observing measurements outside of this configuration (i.e. the
manipulation proceeds), it naturally blunts the effect of this
type of rare configuration by conditioning upon the previous
state distribution.

V. CONCLUSION

In this paper, we measured the accuracy of tactile sensor
and proximity sensor based pose estimation and its effect
on in-hand manipulation performance. The novel application
of proximity sensing to in-hand manipulation is motivated
by the fact that fingertip-embedded proximity sensors are
robust to occlusion (unlike environment- or robot-mounted
image sensors) and able to sense beyond the local areas
of contact (unlike tactile sensors). We considered an in-
hand manipulation task that involved moving an object from
one side of its workspace to the other. Our experiments

Fig. 6: The error in pose estimation for both tactile and
proximity sensing. Each series is averaged over ten trials,
and the shaded errors represent one standard deviation.

demonstrate that proximity sensor based pose estimation
has an average error of less than 3 millimeters, which is
almost half of that of tactile sensor based pose estimation.
In terms of task performance, proximity sensing resulted in
significantly more robust task completion and final object
positioning accuracy relative to tactile sensing.

A. Limitations

One direction for future work is to perform similar ex-
periments for a wider range of in-hand manipulation tasks.
In particular, these experiments could be expanded by using
manipulation objects of different size, weight, and geomet-
ric shape. The task could be further generalized by using
arbitrary initial and goal poses within the robot’s workspace.

A limitation of our work is the way in which we imple-
mented tactile sensing. Particularly, higher resolution tactile
sensors will likely perform better than our spatially sparse
tactile sensor baseline. Although we directly compare tactile
sensing against proximity sensing for pose estimation in our
experiments, there are other aspects of manipulation that
require some form of tactile sensing. Specifically, tactile
sensors can detect applied forces, object slippage, vibrations,
etc. that can be useful for manipulation but would be difficult
or impossible to measure with purely proximity sensors.
Ultimately, we believe that future work should focus on
developing fingertip sensors that use either new sensing
technologies or a mix of existing mechanisms to achieve
high resolution proximity and tactile sensing.
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