
Multi-Agent Trajectory Prediction and
Generation with Topological Invariants Enforced

by Hamiltonian Dynamics

Christoforos I. Mavrogiannis† and Ross A. Knepper‡

†Sibley School of Mechanical & Aerospace Engineering, Cornell University
cm694@cornell.edu

‡Department of Computer Science, Cornell University
rak@cs.cornell.edu

Abstract. We present a planning framework for decentralized naviga-
tion in dynamic multi-agent environments where no explicit communi-
cation takes place among agents. Our framework is based on a novel
technique for computationally efficient multi-agent trajectory generation
from symbolic topological specifications. At planning time, this tech-
nique allows an agent to generate a diverse set of potential future scene
evolutions in the form of Cartesian, multi-agent trajectory representa-
tions. The planning agent selects and executes the next action assigned
to it from the evolution of minimum cost. The proposed strategy enables
an agent to maintain a smooth and consistent navigation behavior that
is robust to behaviors generated by heterogeneous agents and to unex-
pected events such as agents with changing intentions. Simulation results
demonstrate the efficacy of our approach in responding to such situations
and its potential for real-world applications in crowded environments.

1 Introduction
Several real-world, multi-agent navigation domains, such as pedestrian or street
environments, prohibit the use of explicit communication among agents. Thus,
rational agents need to employ mechanisms for predicting the behaviors of oth-
ers to plan collision-free paths. Although predicting the behaviors of others in a
detailed way is challenging, the assumption of rationality, combined with the con-
straints imposed to agents by the environment bounds results in the definition of
a set of qualitatively distinct, global planning alternatives in the joint trajectory
space of all agents, corresponding to different strategies of joint collision avoid-
ance. Being cognizant of this structure, agents could anticipate different classes
of unfolding multi-agent dynamics. This could enable them to execute actions
of global outlook and consistency, which could allow for consistently expressive,
smooth and efficient motion, even in the face of unexpected events, such as the
appearance of agents with heterogeneous policies or agents with changing inten-
tions. This ability is of particular importance for operation in human-populated
domains, where agents continuously read and react to the rapidly changing en-
vironment. Important domains with these properties include automobile traffic
in parking lots and pedestrian traffic in communal spaces like hallways.

2 Christoforos I. Mavrogiannis and Ross A. Knepper

In this paper, we approach this vision by contributing (1) a symbolic ab-
straction that allows us to classify and enumerate distinct multi-agent trajectory
alternatives; (2) a multi-agent navigation planner that can drive a set of agents
from a starting configuration to a goal configuration, while satisfying topological
trajectory constraints; (3) an online, reactive navigation planning algorithm that
makes use of the aforementioned multi-agent planner as a predictive mechanism;
(4) simulation results, demonstrating the ability of the multi-agent planner to
generate a broad range of topologically distinct, multi-agent trajectories; (5)
simulation results, demonstrating the ability of the online algorithm to generate
smooth, collision-free behaviors, even under challenging conditions such as the
emergence of agents running different policies or agents with changing intentions.

2 Related Work
In the area of decentralized multi-agent navigation, a significant amount of re-
search has been devoted to the design of planning algorithms, based on mecha-
nisms for predicting the joint behavior of multiple agents. The majority of the
literature typically assumes that navigating agents employ policies with shared
architecture, with notable examples including the Social Force [6] and Reciprocal
Velocity Obstacle [20] frameworks as well as more recent algorithms of similar
basis (e.g. Moussäıd et al. [16], Karamouzas et al. [7]). These works do not make
explicit predictions of other agents’ trajectories but make decisions under strong
assumptions on their behaviors. The problem of predicting the trajectories of
multiple navigating agents in real time and for an adequate horizon to allow
for motion planning is challenging, as suggested by the literature on tracking
(e.g. [11]). This has motivated roboticists to look for more practical alternatives
for multi-agent motion prediction. In particular, several approaches have lever-
aged the coupling of agents’ decision making in multi-agent navigation as a way
to guide the motion planning process. Some of them have employed learning
techniques [5, 8, 10, 19] to develop models for prediction and generation of hu-
manlike trajectories whereas others have employed heuristics to directly exploit
the topological structure of the problem [9, 13] as a more tractable alternative
for explicit trajectory prediction.

This paper is closer to the latter class of work. We leverage the topological
properties of the spatiotemporal structure of the multi-agent navigation planning
problem to generate diverse multi-agent trajectory predictions. In contrast to our
past work [12–15], in which we used this topological structure at an abstract level
to design an action selection mechanism, this paper introduces a framework for
trajectory generation from symbolic, topological specifications which allows for
smoother and more consistent behaviors. Our framework is based on the method
of Berger [3], which allows for braiding multi-particle trajectories into desired
topological patterns. Our prediction mechanism grows trajectories from agents’
initial configurations to agents’ predicted destinations in topologically distinct
ways. This allows us to introduce desired global properties to the trajectory, in
contrast to typical trajectory optimization methods (e.g. [21]), which act on a
trajectory locally. Based on this mechanism, we present an online algorithm that
generates a diverse set of distinctly entangled multi-agent trajectories and eval-
uates them with respect to their quality and likelihood, to select an action that

Multi-Agent Trajectory Generation with Topological Invariants 3

best adapts to other agents’ impending behaviors and preferences. This allows
for rapid adjustment to the changing environment and facilitates robustness to
unexpected events such as the emergence of heterogeneous agents or agents with
changing intentions.

3 Foundations
We consider the planning problem for an autonomous agent that navigates to-
wards its destination in a known environment where other agents are also nav-
igating towards their respective destinations. The agent aims at reaching its
destination by following an efficient, smooth, collision-free trajectory and as-
sumes that others share similar objectives, although it has no knowledge of their
specific policies. The agent is not explicitly communicating with others and thus
has no knowledge of their intended destinations or planned paths or policies but
is able to perfectly observe their motion. Assuming that others share similar
abilities and objectives, the agent may form a belief about how they are going
to move in the future so that it can plan a safe and efficient path towards its
destination.

In this paper, we present an approach inspired by the point vortex prob-
lem [1] from fluid dynamics. We design a planning framework built around the
observation that the collision avoidance process for agents navigating on a plane
resembles the dynamics of interacting point vortices in two dimensions. Treat-
ing agents as point masses subjected to vortex dynamics allows us to synthesize
multi-agent trajectories with desired topological properties. At planning time,
this technique enables a planning agent to construct several qualitatively dis-
tinct predictions about the future behavior of the system. This allows for an in-
formed action selection towards facilitating a rapid and robust adjustment to the
changing environment. Since the predictions are made with a global outlook, this
strategy results in a consistently smooth and intent-expressive behavior, even in
the face of unexpected events such as agents changing intentions or violating the
assumption of rationality. Our approach is based on the method of Berger [3, 4]
for generating braided trajectories of multi-particle systems from topological in-
variants [4]. In this section, we introduce some preliminaries about point vortex
flows, review the method of Berger [3] and present the key components of our
approach.

3.1 Hamiltonian Motion for Multi-Particle Trajectory Braiding

A dynamical system whose evolution is described by Hamilton’s equations is
called a Hamiltonian system. Under the Hamiltonian formalism, the state of a
system is completely described by a set of variables corresponding to the gen-
eralized coordinates of the system’s degrees of freedom and their conjugate mo-
menta. Hamilton’s equations relate the evolution of an energy function, called the
Hamiltonian, to the evolution of the coordinates and momenta for all degrees of
freedom of the system. In particular, denoting by qj and pj , j ∈M = {1, . . . ,m}
the generalized coordinate and conjugate momentum of the ith degree of freedom
of a Hamiltonian system respectively, its evolution is given by:

q̇j = ∂H

∂pj
, ṗj = −∂H

∂qj
,

dH

dt
= 0, j = 1, . . . ,m, (1)

4 Christoforos I. Mavrogiannis and Ross A. Knepper

where the dot notation indicates time derivatives, H denotes the Hamiltonian
of the system (which is preserved), defined as its total energy, i.e., the sum of
the total kinetic and potential energy of all degrees of freedom of the system.

Let us now combine the coordinates and momenta for each degree of freedom
into a complex coordinate zj = qj + ipj , j ∈M . We define an analytic function

F (z1, . . . , zm) = Ψ(z1, . . . , zm) + iH(z1, . . . , zm), (2)
where Ψ : Cm → R and H : Cm → R. Berger [3] showed that the Hamiltonian
flow (1) results in motion żj , j ∈ N = {1, . . . , n}, that follows the Wirtinger
derivative of Ψ with respect to zj . Therefore, the collective Hamiltonian motion
of all degrees of freedom follows the gradient of Ψ and points towards its direction
of maximum increase. Berger [3] used this finding to generate braided trajectory
patterns for systems of two and three particles. In particular, he replaced Ψ with
Topological Invariants [4] towards forcing the system to evolve along the growth
of the topological invariant.
3.2 Topological Invariants of Particle Trajectories
Consider a set of n particles, following trajectories ξi : [0, T]→ R2, i ∈ N , from
time t = 0 to time t = T and let us collect these trajectories into a system
trajectory Ξ = (ξ1, . . . , ξn). A topological invariant over Ξ, may be defined as a
function Ψ : Ξ → R that maps the system trajectory to a real number that char-
acterizes the spatiotemporal topology of the system dynamics. For any distorted,
topology-preserving trajectory Ξ̃ 6= Ξ with the same endpoints Ξ̃(0) = Ξ(0),
Ξ̃(T) = Ξ(T), for which ξi(t) 6= ξj(t), ∀t ∈ (0, T) and i 6= j ∈ N , a topological
invariant is preserved, i.e., Ψ(Ξ̃) = Ψ(Ξ).

3.2.1 The Winding Number
The so called Winding Number is a topological invariant of particular interest for
our problem. Consider a curve γ : [0, t]→ C\{0}. The complex winding number
of the curve γ, from time 0 to time t is defined as:

λ(t) = 1
2πi

∮
γ

dz

z
, (3)

where z ∈ C. Let us express γ in polar coordinates as γ(t) = r(t)eiθ(t), where
r(t) = ||γ(t)|| and θ(t) = ∠γ(t). Then, through the use of the Cauchy integral
formula, (3) may be decomposed into:

λ(t) = 1
2πi

∫ t

0

ṙ

r
dt′ + 1

2π

∫ t

0
θ̇dt′ (4)

and computing the integrals yields:

λ(t) = 1
2πi log

(
r(t)
r(0)

)
+ 1

2π (θ(t)− θ(0)). (5)

The real part of this integral, w = Re(λ), is a topological invariant, counting
the number of times the curve γ encircled the origin in the time interval [0, t]. In
other words, fixing the endpoints of the curve, any topology-preserving deforma-
tions are mapped to the same value of the winding number. For closed curves,
the imaginary part of the winding number is zero. In the following section, con-
sidering open curves (evolving trajectories), we describe how it can be used to
enforce Hamiltonian motion to interacting particles.

Multi-Agent Trajectory Generation with Topological Invariants 5

Fig. 1: Spacetime plot of the trajectories of two agents, navigating in a circular
workspace (left) and projection of their trajectories until time t1, onto the xy plane,
along with the definition of their pairwise winding angle and winding number (right).
3.3 Two-Particle Vortex Motion

In this section we put the pieces together to demonstrate a motivating example
from fluid dynamics that constitutes the computational basis of our approach.
Consider a system of two particles, placed initially at positions a = (ax, ay) ∈ R2

and b = (bx, by) ∈ R2 with respect to a fixed coordinate system and assume that
a vortex1 lies between them. Point vortex motion prescribes that the x and y
coordinates are conjugate to each other (e.g. the conjugate momentum to ax is
ay) [1]. Let us define the function γab from the previous section to track the
quantity a − b, i.e., let us set γab(t) = rab(t)eiθab(t), where rab = ||a − b|| and
θab(t) = ∠γab(t).

Assuming unit vorticity, the Hamiltonian for this system may be written as:
H = − 1

2π log rab. (6)
Similarly to Sec. 3.2.1, we may define the complex winding number of γab as:

λab(t) = 1
2πi log(rab) + 1

2π (θab(t)− θab(0)), (7)
and let us set its real part to a dedicated variable

wab(t) = 1
2π (θab(t)− θab(0)), (8)

denoting the pairwise winding number of the two curves (see Fig. 1 for a graphic
representation of the pairwise winding number). We may notice that Im(λab) =
H. Thus, according to Sec. 3.1, the Hamiltonian flow for this system maximizes
the growth of the real part Re(λab) = wab. This motion corresponds to the two
points rotating about each other at a constant radius, in a counterclockwise
direction. Hamilton’s equations for this system may be derived as:

(ȧx, ȧy) =
(
∂H

∂ay
,− ∂H

∂ax

)
= 1

2π

(
−ay − by

r2
ab

,
ax − bx
r2
ab

)
, (9)

1 A vortex is a region in a fluid in which the flow revolves around an axis line.

6 Christoforos I. Mavrogiannis and Ross A. Knepper

(ḃx, ḃy) =
(
∂H

∂by
,−∂H

∂bx

)
= 1

2π

(
−by − ay

r2
ab

,
bx − ax
r2
ab

)
. (10)

We may control the directionality of the rotation by switching the signs in the
right hand side of eqs. (9) and (10).

3.4 Two-Agent Collision Avoidance as Vortex Motion

Treating agents as particles, we may use the outlined method of Berger [3] as
a mechanism for generating two-agent, collision-avoidance maneuvers of desired
topological specification. Given a winding number wab, by multiplying the right
hand sides of eqs. (9) and (10) with sign(wab), we have a planning rule that
allows us to grow trajectories for a and b that follow the direction indicated by
wab, with sign(wab) > 0 and sign(wab) < 0 corresponding to right and left hand
side collision avoidance respectively. In a two-agent scene, this may serve as a
prediction of the emerging joint behavior. In a scene with high uncertainty, where
no agent has committed to a passing side, this mechanism allows a planning
agent to anticipate both outcomes. This is useful as it allows the agent to either
enforce its own preference or adapt to the preference of the other agent. In the
following section, we show how we use this method for synthesizing trajectories
of complex topological specifications in environments with multiple agents.

3.5 Multi-Agent Trajectory Generation from Topological
Specifications

Consider the problem of centralized trajectory planning for driving n agents
from their initial positions S = (s1, . . . , sn) ∈ R2n to their destinations D =
(d1, . . . , dn) ∈ R2n in a collision-free fashion and while following a global topo-
logical specification w, prescribing passing sides to agents. In this paper, we
model w as a tuple of pairwise winding numbers w = (w12, w13, . . .) from the
set of such tuples W. Assuming that each agent passes each other exactly once
on its way to its destination (agents do not loop around others), the magnitude
of wij , i 6= j ∈ N is not important, so we will be using wij to refer to sign(wij).
The cardinality of the set of possible specifications is |W| = 2(n

2), corresponding
to all possible combinations of passing sides for all agents. It should be noted
that although all combinations in W are topologically possible, in practice, only
a subset of them are meaningful and likely given agents’ state history and under
the assumption of rationality. Sec. 3.6 addresses the problem of evaluating the
likelihood and the feasibility of a topological specification.

We now describe a policy π : R2n × W → R2n that can be sequentially
iterated to produce a multi-agent trajectory that satisfies a topological specifi-
cation w. The policy (referred from now on as HTTG, standing for Hamiltonian
Topological Trajectory Generation) prescribes an action ui ∈ R2 to every agent
i ∈ N , synthesized from a weighted consideration of all pairwise collision avoid-
ance reactions between the agent and all others, towards meeting the pairwise
specifications contained in w. The policy is executed repeatedly until all agents
reach their destinations. It may be formulated for agent i as follows:

ui = νi · k
(
uiatt + uirep

)
, (11)

Multi-Agent Trajectory Generation with Topological Invariants 7

where νi ∈ R is an agent’s desired speed, uiatt, uirep are potentials attracting
the agent towards its destination and repulsing it from others respectively and
k ∈ R is a normalization constant. The potential

uiatt = katt(di − qi) (12)
attracts the agent from its current state qi towards its destination di with katt
being an importance weight. The potential

uirep = krep

N∑
j 6=i

cijwijv
i
j , (13)

repulses agent i from each other agent j ∈ N , j 6= i, through the velocity vij ,
derived from eqs. (9) and (10), with a degree of consideration equivalent to the
criticality of their pairwise collision avoidance, expressed by cij ∈ R (the closer
two agents are, the more critical their avoidance becomes) and along the di-
rection indicated by wij whereas krep is an importance weight. The choice of
the weighting factors katt, krep expresses the relative significance between goal
attraction and collision avoidance. The criticality term is designed to be a poly-
nomial function of the distance between two agents, activated when the distance
becomes lower than a threshold. By sequentially executing the outlined policy,
in parallel for all agents, in equal time steps of length dt, the system of agents is
forced to follow the specification w. Note that this method does not guarantee
the attainment of the desired topology. Depending on the number of agents, their
initial configurations and intended destinations and the parameter tuning, the
method has a varying control over the topological properties of agents’ trajecto-
ries. Sec. 4 explores the performance of the method on scenarios with different
numbers of agents.

3.6 TANP: Topologically Adaptive Navigation Planning
In this section, we present an online, decentralized navigation planning algorithm
that makes use of the described method for generating online a set of topolog-
ically distinct, multi-agent trajectory predictions. The algorithm comprises the
following sequence of actions: (1) predict the destinations of other agents; (2)
generate a set of candidate multi-agent trajectories that drive agents from their
current locations to their predicted destinations; (3) evaluate candidates with
respect to a cost function; (4) execute the next action assigned to the planning
agent from the lowest-cost candidate. In the following subsections, we describe
the main components of the algorithm and provide a detailed presentation of it
in pseudocode format (see Alg. 1).

3.6.1 Destination Prediction

In sec. 3.5, it was assumed that the planning policy has access to the destinations
of other agents. In the settings we are considering (no explicit communication
among agents), this is not the case. Thus, the planning agent needs to make a
prediction about the destinations of others in order to use the policy. However,
in practice, an agent only interacts with others for as long as they lie within
its sensing range, which for current robotic systems is quite limited. During this
amount of time, other agents’ observed behaviors may or may not be revealing

8 Christoforos I. Mavrogiannis and Ross A. Knepper

about their specific destination. And in fact, detailed predictions of agents’ desti-
nations may not be sufficiently informative regarding agents’ future behaviors; in
crowded environments, the collision avoidance process is a more significant influ-
ence over agents’ behaviors. For this reason, we take a more practical approach,
focusing on coarse predictions of agents’ future locations.

Fig. 2: The destination predic-
tion mechanism. The red agent
makes destination predictions for
all agents, lying within its circular
sensing disk and in front of it.

In particular, we assume that an agent’s
sensing range has the shape of a disk of ra-
dius R, centered at the agent’s position, qi.
Any agent lying outside of this disk is not per-
ceived by the agent whereas any agents lying
behind the robot are ignored at the planning
stage. For each one of the perceived and ac-
tively considered agents, we approximate their
intended direction of motion by fitting a line
to their recent, observed trajectory and pro-
jecting their current velocity on it. We then
propagate their current speed along this di-
rection until it intersects the boundary of the
sensing disk. For our planning algorithm, that
point of intersection is considered to be that
agent’s destination (see Fig. 2). This predic-
tion is expected to be a coarse approximation
of where an agent is heading. However, since our algorithm runs in replanning cy-
cles, this approximation provides a sufficient amount of detail for the trajectory
prediction mechanism of sec. 3.5. This mechanism makes use of the assumption
that agents act rationally, i.e., agents’ behaviors are driven by an incentive of
making progress towards their destinations. Finally, alternative methods of filter-
ing could be employed to provide more accurate destination prediction; however,
this is not our focus and as our will be shown in Sec. 4, this simplistic model
may yield the desired performance.

3.6.2 Outcome Evaluation
The set W contains symbolic representations of topologically distinct outcomes
for the system of all considered agents. Naturally, a significant question that
arises is: which outcome should the planning agent trust and follow? We ap-
proach this problem with the following sequence of computations: (1) we first
evaluate an outcome with respect to its likelihood; (2) we then generate trajec-
tory representations for the set of the K most likely outcomes WK ⊂ W, using
the policy presented in Sec. 3.5; (3) finally, we evaluate these K best outcomes
with respect to the physical properties of their trajectory representations.
Probability of an outcome: An outcome is initially encoded symbolically as
a tuple w that prescribes how agents avoid each other throughout the course of
the scene. From a topological perspective, these symbols are independent of each
other; any motion is allowed even if it is not efficient. However, from a real-world
point of view, the collision-avoidance strategies that agents employ to avoid one-
another are coupled and modeling the complex probabilistic relationships among
them is a challenging problem. For our purposes in this paper, we are interested

Multi-Agent Trajectory Generation with Topological Invariants 9

in finding a way to bias our search towards the outcomes that are more likely to
occur. We do so by using the following expression:

P (w|Ξpast) = P (w12, w13, . . . |Ξpast) ∝
1
Z

∏
ij

P (wij |Ξpast), (14)

where Ξpast denotes agents’ past trajectories and Z is a normalization constant
across all w ∈ W. This expression was derived by factorizing P (w12, . . . |Ξpast)
using the product rule and then substituting each factor with its Bayes’ rule
expression. Similarly to our past work [13], we model P (wij |Ξpast) by employing
the physical quantity of angular momentum. For two agents i, j, navigating on
a plane, their angular momentum Lij lies along the z axis. Notice that the sign
of the z-component of the momentum, Lijz is an indicator of agents’ passing
side and thus of the winding number of their trajectories wij , with Lijz > 0
indicating the emergence of wij > 0 (right hand side collision avoidance) and
Lijz < 0 indicating the emergence of wij < 0 (left hand side collision avoidance).
We incorporate the momentum as a heuristic in a sigmoid model as follows:

P (wij |Ξpast) = 1
1 + exp(−wijLijz)

. (15)

The greater |Lijz | is, the greater the mutual intention or preference of agents i
and j over a collision avoidance along the direction of Lijz is.
Trajectory Evaluation: We evaluate a trajectory representation Ξw of an
outcome w by computing its total energy E : Zn → R, its required immediate
acceleration A : Zn → R and its safety cost S : Zn → R. The Energy mea-
sure (sum of squared speeds throughout the trajectory) gives an estimate of the
efficiency of an outcome whereas the acceleration measure is indicative of the
aggressiveness of the maneuvers required to comply with an outcome. We model
the Safety cost as S(Ξ) = exp(−dmin), where dmin ∈ R is the minimum distance
between any pair of agents in a trajectory Ξ. Note that other cost functions could
be used to incorporate different considerations such as social comfort (see e.g.
Sisbot et al. [18]).

Fig. 3: Illustration of the planning scheme. At every replanning cycle, the planning
agent generates a set of diverse (topologically distinct) predictions about the joint
future behavior of all agents, evaluates them with respect to a cost function C and
executes the action assigned to it from the prediction of lowest cost.

3.6.3 Decision Making

We first rank outcomes at a symbolic level through the use of the probability
distribution, presented in Sec. 3.6.2 and determine the set of the K most likely
outcomes WK . Then, we determine the outcome of lowest cost:

10 Christoforos I. Mavrogiannis and Ross A. Knepper

C(Ξ) = αeE + αaA+ αsS, (16)
where αe, αa, αs are importance weights and finally extract the optimal outcome
through the following optimization scheme:

w∗ = arg min
w∈WK

C(Ξw). (17)
The planning agent executes the next action assigned to it from the trajectory of
lowest cost Ξw∗ . Fig. 3 depicts a graphic representation of the planning scheme.

3.6.4 Pseudocode
Alg. 1 summarizes the described algorithm (Topologically Adaptive Navigation
Planning – TANP) in pseudocode format. The algorithm runs in replanning cy-
cles for as long as the boolean variable AtGoal is set to False, indicating that
the agent has not reached its destination yet. At every cycle, the agent first de-
termines a set of reactive agents, i.e., agents that lie within the robot’s sensing
disk and to the front of the robot’s heading (function Get_Reactive_Agents).
Then, function Predict_Destinations outputs predictions for the destinations
of the reactive agents and Get_Outcomes returns a set of topological representa-
tions for outcomes that could emerge in the remainder of the execution. Function
Get_Outcome_Probability returns the probability for each of the outcomes con-
sidered and function Get_Best_Outcomes returns the K best outcomes. Func-
tion HTTG executes the HTTG policy and generates trajectory representations for
these outcomes and function Score_Trajectory evaluates them with respect to
the cost function considered. Finally, function Get_Best_Next_Action returns
the next action for the planning agent from the trajectory of lowest cost and
function Execute Action executes that action. The distance between the result-
ing agent state and its destination is compared to the predefined threshold ε and
the flag AtGoal is updated to True in case the agent is sufficiently close to its
destination.
3.7 Complexity and Practical Considerations
The most computationally intense component of our algorithm is the estimation
of the outcome probabilities. For n agents, this computation runs in time O(2n2)
–the rest of the computations run in polynomial time. In practice, a replanning
cycle of TANP on a scenario involving 4 agents and thus the evaluation of 64
topological classes with K = 5, runs at an average of 42ms, with the worst case
being 203ms in a non-optimized MatLab implementation on a MacBook Pro of
2015 with an Intel Core i7 processor of 2.5 GHz, running macOS High Sierra.
Transfer to a faster language and optimization of parts of the code could help
vastly improve performance.

Under the current design, scaling to large n is not possible. However, for
a mobile robot application, we argue that it is also not practical. The sensing
limitations would prohibit the emergence of a large number of agents. Even if
more agents are sensed, pruning them to the subset of directly reactive agents is
a motivated and human-inspired way of reducing the load. Future work involves
the design of an online data-driven topology-classification mechanism that would
enable agents to directly estimate the most likely candidates, without brute-
forcing their evaluation.

Multi-Agent Trajectory Generation with Topological Invariants 11

Algorithm 1 TANP(q, d, Ξ)
Input: q − agent’s current state; d − agent’s intended destination; Ξpast −

state history of all agents; K − Number of outcomes to consider; ε − desired
distance-to-goal threshold.

1: AtGoal← False
2: while ¬AtGoal do
3: R ← Get_Reactive_Agents(Ξpast)
4: D ← Predict_Destinations(Ξpast,R)
5: W ← Get_Outcomes(R)
6: P ← Get_Outcome_Probability(W, Ξpast)
7: WK ← Get_BestOutcomes(P,W,K)
8: Z ← ∅
9: for all w ∈ WK do

10: Ξpred ← HTTG(Ξpast,w, D)
11: Z ← {Z, Ξpred}
12: C ← Score_Trajectories(Z)
13: u← Get_Best_NextAction(Z, C)
14: q ← Execute_Action(u)
15: if ||q − d|| < ε then
16: AtGoal← True
17: return None
4 Results
In this section, we present the performance of the offline planner in generating
trajectories of desired topological properties and the behaviors generated by the
online algorithm in different types of scenarios.

4.1 Offline Performance

We demonstrate the performance of the offline motion planner in generating
topologically distinct, multi-agent navigation trajectories. We consider 4 differ-
ent conditions, corresponding to different numbers of agents (2,3, 4 and 5 agents),
navigating in a circular workspace of radius 2.5m (agents are represented as disks
of radius 0.3m). For each condition n ∈ {2, 3, 4, 5}, we randomly generate 100
distinct scenarios, by assigning agents initial and final locations that lead to
challenging multi-agent encounters, requiring competent collision avoidance ma-
neuvers. We execute each scenario, 2(n

2) times, each with a distinct topological
specification. We measure the success rate of the planner in generating the de-
sired topology under all conditions considered and report it in Table 1 (a trial
is considered successful if the planner was able to produce all of the distinct
topologies). The planner parameters were kept constant across conditions and
scenarios. It can be observed that the planner performance drops as the number
of agents n increases. The method becomes more sensitive to parameter tun-
ing, as the effects of the chaotic nature of the vortex problem [2] become more
significant. In appendix A, Fig. A.1 and Fig. A.2 depict the trajectories gener-
ated by following all possible topological specifications on an example 3-agent
and scenario and an example 4-agent scenario respectively. Finally, Fig. 5 shows

12 Christoforos I. Mavrogiannis and Ross A. Knepper

examples of how the outlined trajectory generation mechanism may be used for
online prediction in scenarios involving two, three and four agents.

Condition 2 agents 3 agents 4 agents 5 agents
Number of Outcomes 2 6 64 1024

Success (%) 1 99.75 89.70 65.48
Table 1: Success rate of HTTG in generating the desired, topologically distinct execu-
tions for each of the 100 scenarios consider per condition.

4.2 Comparison with Trajectory Optimization
To the best of our knowledge, this is the first work that addresses the problem
of generating trajectories for multiple agents in distinct topologies, specified a
priori. Conceptually similar, the work of Rösmann et al. [17] considered the prob-
lem of generating multiple, topologically distinct trajectories for a single agent
in a static environment with obstacles. However, optimizing multiple trajecto-
ries together and accounting for topological constraints while ensuring trajectory
smoothness is a challenging problem. Typical gradient-based methods (e.g. [21])
act on the trajectory locally, with costs comprising several objectives; thus the
gradient action could lose sight of the global, topological specification in favor
of a different, local cost improvement. Furthermore, a differentiable cost func-
tion that would quantify the progress towards a desired topological outcome is
hard to hand-design and we were not able to find any functions of that form
in the literature. Our method constitutes a principled alternative to trajectory
optimization for this problem. Instead of locally reshaping a set of trajectories
according to the gradients on the trajectory waypoints to attain local optima,
our method grows the trajectories from initial conditions with a policy that has
global knowledge of the desired trajectory topology. Similar to gradient-based
optimization techniques, our method cannot guarantee the attainment of global
optima. However, the physical encoding of the topological specification into the
planning mechanism results in satisfactory performance for a class of problems.

Planner Success (%) No. of iterations Time (s)
CHOMP 78.80 80.3325 0.1291
HTTG 98.40 86.8862 0.0048

Table 2: Success rates and computation times of HTTG and CHOMP over 500 ran-
domly generated 2-agent scenarios.

To illustrate the difficulty of automatically synthesizing multi-agent trajec-
tories of desired topological specifications through trajectory optimization tech-
niques, we consider a simple case study, in which we compare the performance
of HTTG with the performance of CHOMP [21]. We randomly generate 500
different scenarios involving 2 agents navigating towards opposing sides of a cir-
cular workspace (workspace has 5m diameter, starting positions are uniformly
distributed along the circumference, speed normally distributed between 0.3m/s
and 1.5m/s for each agent). For each scenario, we randomly sample a passing
side that agents should pass one another. To encode the objective of respecting
a passing side to CHOMP, we construct a cost functional Ftop = 1

2 (wab−wdes)2

which approaches zero as the winding number of agents’ trajectories wab ap-

Multi-Agent Trajectory Generation with Topological Invariants 13

proaches the winding number corresponding to the desired passing side, wdes.
Table 2 illustrates the performance of the two approaches, which is measured
with respect to success rate and computation time (non-optimized MatLab im-
plementation on a MacBook Pro of 2015 with an Intel Core i7 processor of 2.5
GHz, running macOS High Sierra). For CHOMP, a trial is considered successful
if it generates trajectories of the desired topology within 500 iterations whereas
for HTTG, a trial is considered successful if the desired topology is achieved
once the agents reach their destinations. It can be observed that HTTG domi-
nates with a success rate of 98.40% (corresponding to 492/500 successful trials).
The computation time is comparable in terms of iteractions but HTTG requires
almost two orders of magnitude less time in seconds. The benefits provided by
HTTG in terms of success rate and computation time make the consideration of
multiple trajectory topologies at planning time a more practical strategy.

4.3 Online Performance

In order to demonstrate the benefits of our online algorithm 1, we perform a
simulation study comprising a series of experiments on the circular workspace
considered in the previous sections (diameter 5m). We consider 9 different ex-
periment configurations, each corresponding to a different group of navigating
agents. In particular, we consider groups of 2, 3 and 4 agents, navigating under
three different conditions: (a) a homogeneous condition –all agents run the same
planner; (b) a heterogeneous condition in which one agent runs our planner and
others are moving straight to their goals without avoiding collision; (c) a hetero-
geneous condition in which one agent runs our planner and others are changing
intentions over a destination twice, without avoiding collisions. Note that the
two latter cases are are particularly challenging for decentralized planners, as a
typical assumption they rely heavily on is homogeneity. For reference, we per-
form the same experiments with the Optimal Reciprocal Collision Avoidance
(ORCA) [20] (clearance and speed parameters tuned similarly to ensure a fair
comparison). We quantify the performance of the planners with respect to four
aspects of trajectory quality: (1) Experiment time, measured as the amount of
time that the last agent to reach its destination took; (2) Safety, measured as
the minimum distance between any two agents for the homogeneous condition
and as the minimum distance between a TANP/ORCA agent and any other
agent for the heterogeneous conditions; (3) Path Efficiency, measured as the ra-
tio between the length of the optimal path to goal and the length of the path a
TANP/ORCA agent followed (averaged over agents in the homogeneous case);
(4) Trajectory Acceleration, measured as the average acceleration per time step
per TANP/ORCA agent throughout the experiment.

Fig. 4 depicts the performance of TANP and ORCA under each of the con-
figurations considered. For each configuration, each planner executed the same
set of 200, randomly generated scenarios. Overall, TANP exhibits the best time-
efficiency for almost all configurations (Fig. 4a). When executed under homo-
geneous settings, TANP establishes a consistently high clearance from others,
which results in a drop in terms of path efficiency (Fig. 4c) and a high accel-
eration per time step (Fig. 4d). The increased time efficiency of TANP could
be attributed to the implicit consensus that is reached through the considera-

14 Christoforos I. Mavrogiannis and Ross A. Knepper

(a) Experiment Time. (b) Safety.

(c) Path Efficiency. (d) Trajectory Acceleration.
Fig. 4: Trajectory Quality for all experiment configurations considered. For group size,
the same 200 randomly generated scenarios are executed under each of the conditions
considered with both planners. For each condition and measure, we perform a paired
Student’s t-test to compare the populations yielded by TANP and ORCA. Points with
black circular boundaries indicate rejection of the null hypothesis with p-value < 0.001
whereas points with star boundaries indicate rejection of the null hypothesis with p-
value < 0.05.

Multi-Agent Trajectory Generation with Topological Invariants 15

(a) Two agents. (b) Three agents. (c) Four agents.
Fig. 5: Overlaid predictions made by a TANP agent (red color) as it navigates towards
the red landmark in environments with 2, 3 and 4 agents.
tion of joint strategies of collision avoidance. The price the TANP agents pay is
increased accelerations and generally lower path efficiency. On the other hand,
ORCA is consistently slower but stably safe across all conditions. Under the
homogeneous condition, it achieves the highest path efficiency and lowest ac-
celeration, which was expected by its optimality-driven design. This efficiency
advantage fades under the heterogeneous conditions, in contrast to TANP, which
demonstrates a more balanced behavior.

5 Discussion & Future Work
We presented an online planning framework for the generation of adaptive robot
motion in dynamic environments where multiple other agents navigate by exe-
cuting generally different policies. Our framework is based on an offline planner
that generates a diverse set of multi-agent trajectory predictions. Each predic-
tion prescribes a different, collision-avoiding behavior to the planning agent. The
agent selects the prediction of lowest cost and executes the first action from it.
This architecture enables an agent to make local decisions with a global out-
look that allows for anticipation of any upcoming agent interactions and rapid
adjustment to them. Simulated examples demonstrate the performance of the of-
fline and online parts of our framework. Future work involves (a) evaluating our
algorithm in environments of more complex geometry, (b) reducing its computa-
tional load by designing a mechanism that efficiently reuses past trajectories and
(c) performing real-world experiments on a robot platform navigating in human
environments.

Acknowledgment
This material is based upon work supported by the National Science Foundation
under Grants IIS-1526035 and IIS-1563705. We are grateful for this support.

Bibliography
[1] H. Aref. Point vortex dynamics: A classical mathematics playground. Journal of

Mathematical Physics, 48(6):065401, 2007.
[2] H. Aref, S. Jones, S. Mofina, and I. Zawadzki. Vortices, kinematics and chaos.

Physica D: Nonlinear Phenomena, 37(1):423 – 440, 1989.
[3] M. A. Berger. Hamiltonian dynamics generated by Vassiliev invariants. Journal

of Physics A: Mathematical and General, 34(7):1363, 2001.

16 Christoforos I. Mavrogiannis and Ross A. Knepper

[4] M. A. Berger. Topological invariants in braid theory. Letters in Mathematical
Physics, 55(3):181–192, 2001.

[5] Y. F. Chen, M. Everett, M. Liu, and J. P. How. Socially aware motion planning
with deep reinforcement learning. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1343–1350, 2017.

[6] D. Helbing and P. Molnár. Social force model for pedestrian dynamics. Physical
Review E, 51:4282–4286, May 1995.

[7] I. Karamouzas, B. Skinner, and S. J. Guy. Universal power law governing pedes-
trian interactions. Physical Review Letters, 113:238701, 2014.

[8] B. Kim and J. Pineau. Socially adaptive path planning in human environments
using inverse reinforcement learning. International Journal of Social Robotics, 8
(1):51–66, 2016.

[9] R. A. Knepper and D. Rus. Pedestrian-inspired sampling-based multi-robot col-
lision avoidance. In Proceedings of the 2012 IEEE International Symposium on
Robot and Human Interactive Communication, pages 94–100, 2012.

[10] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard. Socially compliant mobile
robot navigation via inverse reinforcement learning. The International Journal of
Robotics Research, 35(11):1289–1307, 2016.

[11] W. C. Ma, D. A. Huang, N. Lee, and K. M. Kitani. Forecasting interactive dy-
namics of pedestrians with fictitious play. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4636–4644, 2017.

[12] C. I. Mavrogiannis and R. A. Knepper. Decentralized multi-agent navigation plan-
ning with braids. In Proceedings of the International Workshop on the Algorithmic
Foundations of Robotics, 2016.

[13] C. I. Mavrogiannis and R. A. Knepper. Multi-agent path topology in support
of socially competent navigation planning. The International Journal of Robotics
Research, 2018.

[14] C. I. Mavrogiannis, V. Blukis, and R. A. Knepper. Socially competent naviga-
tion planning by deep learning of multi-agent path topologies. In Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
6817–6824, 2017.

[15] C. I. Mavrogiannis, W. B. Thomason, and R. A. Knepper. Social momentum: A
framework for legible navigation in dynamic multi-agent environments. In Proceed-
ings of the ACM/IEEE International Conference on Human-Robot Interaction,
pages 361–369, 2018.

[16] M. Moussäıd, D. Helbing, and G. Theraulaz. How simple rules determine pedes-
trian behavior and crowd disasters. Proceedings of the National Academy of Sci-
ences, 108(17):6884–6888, 2011.

[17] C. Rösmann, F. Hoffmann, and T. Bertram. Integrated online trajectory planning
and optimization in distinctive topologies. Robotics and Autonomous Systems, 88:
142 – 153, 2017. ISSN 0921-8890.

[18] E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Siméon. A human aware mobile
robot motion planner. IEEE Transactions on Robotics, 23(5):874–883, 2007.

[19] P. Trautman, J. Ma, R. M. Murray, and A. Krause. Robot navigation in dense
human crowds: Statistical models and experimental studies of human-robot coop-
eration. International Journal of Robotics Research, 34(3):335–356, 2015.

[20] J. van den Berg, S. J. Guy, M. C. Lin, and D. Manocha. Reciprocal n-body
collision avoidance. In Proceedings of the International Symposium on Robotics
Research, pages 3–19, 2009.

[21] M. Zucker, N. Ratliff, A. Dragan, M. Pivtoraiko, M. Klingensmith, C. Dellin,
J. A. D. Bagnell, and S. Srinivasa. Chomp: Covariant hamiltonian optimization
for motion planning. International Journal of Robotics Research, 2013.

Multi-Agent Trajectory Generation with Topological Invariants 17

A Trajectories Generated with HTTG

(1, 1, 1) (−1,−1,−1) (1,−1, 1) (−1, 1,−1)

(1, 1,−1) (−1,−1, 1) (1,−1, 1) (−1, 1,−1)
Fig. A.1: Top view of trajectories generated by executing the same 3-agent scenario
with all possible topological specifications. The subcaptions denote the topology tuple
that was used as a specification for each execution.

18 Christoforos I. Mavrogiannis and Ross A. Knepper

(-1,-1,-1,-1,-1,-1) (-1,-1,-1,-1,-1,1) (-1,-1,-1,-1,1,-1) (-1,-1,-1,-1,1,1) (-1,-1,-1,1,-1,-1) (-1,-1,-1,1,-1,1) (-1,-1,-1,1,1,-1) (-1,-1,-1,1,1,1)

(-1,-1,1,-1,-1,-1) (-1,-1,1,-1,-1,1) (-1,-1,1,-1,1,-1) (-1,-1,1,-1,1,1) (-1,-1,1,1,-1,-1) (-1,-1,1,1,-1,1) (-1,-1,1,1,1,-1) (-1,-1,1,1,1,1)

(-1,1,-1,-1,-1,-1) (-1,1,-1,-1,-1,1) (-1,1,-1,-1,1,-1) (-1,1,-1,-1,1,1) (-1,1,-1,1,-1,-1) (-1,1,-1,1,-1,1) (-1,1,-1,1,1,-1) (-1,1,-1,1,1,1)

(-1,1,1,-1,-1,-1) (-1,1,1,-1,-1,1) (-1,1,1,-1,1,-1) (-1,1,1,-1,1,1) (-1,1,1,1,-1,-1) (-1,1,1,1,-1,1) (-1,1,1,1,1,-1) (-1,1,1,1,1,1)

(1,-1,-1,-1,-1,-1) (1,-1,-1,-1,-1,1) (1,-1,-1,-1,1,-1) (1,-1,-1,-1,1,1) (1,-1,-1,1,-1,-1) (1,-1,-1,1,-1,1) (1,-1,-1,1,1,-1) (1,-1,-1,1,1,1)

(1,-1,1,-1,-1,-1) (1,-1,1,-1,-1,1) (1,-1,1,-1,1,-1) (1,-1,1,-1,1,1) (1,-1,1,1,-1,-1) (1,-1,1,1,-1,1) (1,-1,1,1,1,-1) (1,-1,1,1,1,1)

(1,1,-1,-1,-1,-1) (1,1,-1,-1,-1,1) (1,1,-1,-1,1,-1) (1,1,-1,-1,1,1) (1,1,-1,1,-1,-1) (1,1,-1,1,-1,1) (1,1,-1,1,1,-1) (1,1,-1,1,1,1)

(1,1,1,-1,-1,-1) (1,1,1,-1,-1,1) (1,1,1,-1,1,-1) (1,1,1,-1,1,1) (1,1,1,1,-1,-1) (1,1,1,1,-1,1) (1,1,1,1,1,-1) (1,1,1,1,1,1)

Fig. A.2: Top view of trajectories generated by executing the same 4-agent scenario
with all possible topological specifications. The subcaptions denote the topology tuple
that was used as a specification for each execution.

	Multi-Agent Trajectory Prediction and Generation with Topological Invariants Enforced by Hamiltonian Dynamics
	1 Introduction
	2 Related Work
	3 Foundations
	3.1 Hamiltonian Motion for Multi-Particle Trajectory Braiding
	3.2 Topological Invariants of Particle Trajectories
	3.2.1 The Winding Number

	3.3 Two-Particle Vortex Motion
	3.4 Two-Agent Collision Avoidance as Vortex Motion
	3.5 Multi-Agent Trajectory Generation from Topological Specifications
	3.6 TANP: Topologically Adaptive Navigation Planning
	3.6.1 Destination Prediction
	3.6.2 Outcome Evaluation
	3.6.3 Decision Making
	3.6.4 Pseudocode

	3.7 Complexity and Practical Considerations

	4 Results
	4.1 Offline Performance
	4.2 Comparison with Trajectory Optimization
	4.3 Online Performance

	5 Discussion & Future Work
	A Trajectories Generated with HTTG

