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Crowded human environments such as pedestrian scenes constitute challeng-

ing domains for mobile robot navigation, for a variety of reasons including the

heterogeneity of pedestrians’ decision-making mechanisms, the lack of chan-

nels of explicit communication among them and the lack of universal rules or

social conventions regulating traffic. Despite these complications, humans ex-

hibit socially competent navigation through coordination, realized with implicit

communication via a variety of modalities such as path shape and body pos-

ture. Sophisticated mechanisms of inference and decision-making allow them

to understand subtle communication signals and encode them into their own

actions. Although the problem of planning socially competent robot navigation

has received significant attention over the past three decades, state-of-the-art

approaches tend to explicitly focus on reproducing selected social norms or di-

rectly imitating observed human behaviors, while often lack of extensive and

thorough validation procedures, thus raising questions about their generaliza-

tion and reproducibility.

This thesis introduces a family of planning algorithms, inspired by studies

on human navigation. Our algorithms are designed to produce socially com-

petent robot navigation behaviors by leveraging the existing mechanisms of

implicit coordination in humans. We model multi-agent motion coordination

through a series of data structures, based on mathematical abstractions from

low-dimensional topology and physics, that capture fundamental properties of



multi-agent collision avoidance. These models enable a robot to anticipate the

effects of its actions on the inference and decision-making processes of nearby

agents and allow for the generation of motion that is compliant with the unfold-

ing evolution of the scene and consistent with the robot’s intentions.

The introduced planning algorithms are supported by extensive simulated

and experimental validation. Key findings include: (1) evidence extracted from

a series of simulated studies, suggesting that the outlined planning architecture

indeed results in effective coordination within groups of non-communicating

agents in a variety of simulated scenarios; (2) evidence extracted from an on-

line, video-based user study with more than 180 participants, indicating that

humans perceive the motion generated by our framework as intent-expressive;

(3) evidence extracted from an experimental study, conducted in a controlled

lab environment with 105 human participants, suggesting that humans follow

low-acceleration paths when navigating next to a robot running our framework.
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CHAPTER 1

INTRODUCTION

1.1 Preface

The traffic flow in human environments, such as crowded hallways, sidewalks,

and rooms may often be characterized as unstructured and even unpredictable,

for a variety of reasons, including the heterogeneity of pedestrians’ decision-

making mechanisms, the lack of formal rules to regulate traffic and the lack of

channels of explicit communication among pedestrians. Nonetheless, humans

are capable of traversing such environments with remarkable efficiency, without

hindering one another’s motion. Human navigation not only achieves collision

avoidance; it does so while respecting several social considerations, such as the

passing preference of others and their personal space [58]. This behavior has

largely been attributed to trust, with pedestrians trusting that others will be-

have competently [148]. This form of trust enables humans to infer the intentions

of others, under the assumption of rational action [33] but also effectively com-

municate their own intentions by leveraging various implicit communication

channels that allow them to broadcast and receive information through their

path shape, their body posture, their gaze etc. This exchange of information

through nonverbal, implicit communication channels enables humans to effec-

tively negotiate and achieve consensus over mutually preferable joint plans for

collision avoidance.

Deploying a mobile robot in a dynamic environment with the aforemen-

tioned protocols of communication poses a significant challenge. First, encod-

ing the outlined mechanisms of implicit communication that humans employ to
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navigate socially in a crowded workspace into a set of concrete rules and poli-

cies is not a trivial task and it remains an active area of research. Second, hard-

ware design limitations significantly constrain a robot’s perception and action

capabilities, enabling only a limited scene understanding and affording only a

limited set of possible behaviors to be generated. Besides, non-expert humans

have not yet developed mental models, adequate for accurate interpretation of

observed robot behaviors, inference of their intentions, anticipation of their fu-

ture behaviors or broadly, estimation of their capabilities [89].

The described challenges have resulted in the formulation of interesting and

significant research questions that have fueled robotics and human-robot inter-

action (HRI) research over the past three decades. Traditional approaches have

decomposed the problem of robot navigation into subproblems including hu-

man motion prediction and robot path planning and control [16, 134]. Over

the years, it has become empirically observed that these problems are coupled

[47, 137, 138], i.e., the robot’s actions influence human behaviors and vice versa.

Thus, attention has been shifted towards the design of socially aware naviga-

tion planners that incorporate models of behavior prediction into the robot’s

decision making mechanism [28, 34, 57, 78, 81, 86, 114, 122, 123, 140]. This de-

sign concept enables a robot to understand the communicative implications of

its own actions to any observing humans but also adjust to human behavior in

an informed and socially acceptable fashion.

Despite the significant contributions of the past decades in the area of so-

cially aware navigation, we may still observe several gaps in the literature.

These mostly concern: (1) the lack of generalization–approaches tend to be

context-dependent, employing heuristically derived, hand-tuned cost functions;
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(2) the lack of a sufficiently expressive representation of the joint interaction phe-

nomena, taking place in a dynamic multi-agent environment; (3) the lack of a

thorough and in-depth validation in the presence of humans, considering also

feedback from them.

This thesis aims at contributing towards addressing these gaps. We strive

for generalizability by following the insights of studies on human behavior. We

leverage the observation that human navigation tends to be cooperative [148] by

introducing a novel, symbolic representation of collective multi-agent behavior,

inspired by the Braid Groups [10, 11, 20, 73, 110]. Furthermore, we leverage the

insight that human inference tends to be goal-driven [33] and the paradigm of

legible robot motion planning [40], by designing an inference mechanism that

connects action and goal in multi-agent navigation towards producing context-

aware, intention-aware and intent-expressive robot behaviors. We use this mech-

anism for both human motion prediction and robot motion generation, enabling

implicit communication of the robot’s intentions through its path shape–the

most universal modality that any mobile robot has access to. This architecture

represents our perspective of social compliance as intention-compliance; our

family of planning algorithms is designed towards facilitating and accelerat-

ing a consensus among multiple navigating agents over a mutually preferable

joint navigation strategy that contributes collision-avoidance and progress to-

wards agents’ destinations. We conduct and present an extensive validation of

our models, methods and algorithms through simulations and user studies with

human participants.
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1.2 Related Work

Contributing to the field of social robot navigation requires an understanding

of human pedestrian navigation. Human navigation is a highly complex be-

havior, incorporating a multitude of sophisticated mechanisms related to hu-

man decision making, inference, and respect of social norms. Researchers from

highly diverse research areas including sociology, psychology, computer graph-

ics have contributed towards modeling these mechanisms. Over the past few

decades, roboticists have focused on incorporating these models into the pro-

cesses underlying robot perception and planning. This thesis belongs to this

field of research, bringing together the insights of studies on human behavior

into the design of computational tools for social robot navigation.

In this section, we introduce a set of works from literature focused on un-

derstanding the computational processes underlying human navigation, that

have inspired our approach. We also review relevant literature from computer

graphics, focused on modeling and reproducing empirically observed pedes-

trian navigation patterns. We then introduce works that represent the current

state-of-the-art in social robot navigation, classified with respect to their vali-

dation instruments. Subsequently, we highlight a few features that make our

approach unique and expand on them by introducing relevant literature. These

include the introduction of topological representations for modeling emerging

behaviors in multi-agent navigation and leveraging the communicative com-

ponent of robot behaviors as a tool for natural and effective blending of mobile

robots in pedestrian environments. Finally, we take a step back and note that the

aforementioned features essentially constitute tools that allow us to exploit our

understanding of the problem structure. This is a common pattern in robotics
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literature that has resulted in a number of contributions across a series of chal-

lenging classes of robotics problems.

1.2.1 Human Navigation

Understanding and modeling human navigation accurately has been the focus

of researchers from various fields for a long time. Hall [58] introduced the foun-

dational ideas underlying the field of Proxemics, highlighting the importance

of personal space, as a foundation for social comfort in modern urban envi-

ronments, including pedestrian domains. Karp et al. [72], in their definition of

the Mini-Max Hypothesis of Urban Life, specify that “urbanites seek to minimize

involvement and to maximize social order”. This idea is also present in Wolfin-

ger’s definition of the Pedestrian Bargain [148], a concise, high-level protocol of

foundational social rules that regulate pedestrian navigation: (1) “people must

behave like competent pedestrians” and (2) “people must trust co-present oth-

ers to behave like competent pedestrians”. Trust to the rules of the bargain con-

stitutes the basis of smooth co-navigation in human environments, as it enables

pedestrians to plan with the expectation that others will also behave compe-

tently and thus cooperate to resolve potential conflicts. Based on our everyday-

life experience, this is clearly not always the case: sometimes, some pedestrians

might violate the rules of the bargain, by behaving erratically or antisocially in

the presence of others. However, as Wolfinger [148] observes –and as we might

recall from our own experiences as well– humans tend to make use of remedial

mechanisms in such cases, i.e., they tend to acknowledge their fault, apologize

and move on. These mechanisms restore and reinforce the established notion of

trust to the rules of the bargain, that is necessary to preserve the social order in
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pedestrian environments.

The aforementioned mechanisms are made possible through a sophisticated

mechanism of perception and action [145], enabled through information ex-

change mostly via path shape, body posture and gaze [51] that has been widely

studied from a number of different fields. For example, Carton et al. [24] studied

the trajectory planning horizon of humans in locomotion tasks towards inform-

ing the design of models for the prediction of human walking behaviors. Warren

[145] proposed a model that may describe organization in human behavior in a

number of tasks–including lane formation in navigation– by treating an agent

and its environment as a pair of coupled interacting dynamical systems. More

broadly, Csibra and Gergely [33] highlighted the teleological nature of human

inference, suggesting that humans tend to attribute goals to observed actions.

Human navigation which is heavily based on a multi-modal information ex-

change. However, there is evidence that even low-degree-of-freedom robots

are capable of increased expressiveness [85]. Leveraging the most universally

available modality that all mobile robots possess –the path shape– our approach

focuses on expressing a robot’s navigation intentions by encoding its commu-

nicative signals in its actions. Our planning framework aims at generating mo-

tion that maximizes social order through a local, collision-free action selection

with a global lookahead. This is made possible with a principled design of a

goal-driven inference that connects individual and collective behavior towards

enabling artificial agents to understand the effects of their actions on the behav-

iors of others.
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1.2.2 Simulating Artificial Pedestrian Flows

The problem of generating smooth, collision-free, multi-agent simulations has

been central in a number of applications, ranging from city planning to the

study of evacuation scenarios and computer game design. To this end, a class

of papers proposes frameworks that model agents as interacting particles, at-

tracted to their destinations and repulsed by others. Within this class, the So-

cial Force model [62] has been one of the first and most influential approaches,

whereas several works have employed similar models with additional consider-

ations such as discomfort fields [139], local predictive processes [67, 69, 70] and

cognitive heuristics [21, 45, 109]. Some works have employed data-driven tech-

niques to learn the parameters of human navigation in different contexts from

simulated [63] or real world demonstrations [71]. Finally, van den Berg et al.

[142] and Knepper and Rus [81] have proposed decentralized motion planners

that explicitly leverage the expectation of cooperation.

Our proposed planners do not aim at directly replicating observed human

behavior. Instead, they focus on prescribing actions corresponding to the per-

ceived flow of a pedestrian scene, by detecting and complying with human in-

tentions. Our planners are also cooperative by design. However, in contrast

to most of the aforementioned approaches that either treat agents as moving

obstacles or make purely local motion prediction, our inference mechanism en-

ables agents to understand that they are part of a crowd of intelligent agents

that cooperate to reach consensus over a collision avoidance protocol.
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1.2.3 Tracking Pedestrian Flows

The computer vision community has contributed a number of methods focused

on tracking the local or global behavior of pedestrians in different environ-

ments. For example, Scovanner and Tappen [121], Pellegrini et al. [115], Alahi

et al. [4] and Ma et al. [95] present data-driven models for local short-term tra-

jectory predictions for interacting pedestrians, that make use of models of so-

cial interactions, whereas Zhou et al. [150] predict large-scale, global pedestrian

interactions. These contributions are of particular significance both for offline

labeling of pedestrian datasets but also for online tracking of multi-agent be-

haviors for robotics applications.

Similarly to some of the aforementioned approaches, our proposed inference

mechanisms enable agents to perceive the global nature of observed actions.

Under the assumption of rationality (agents move efficiently towards intended

destinations), our prediction models essentially score the set of possible multi-

agent collision avoidance strategies that the agents could follow to reach their

destinations in a collision-free fashion.

1.2.4 Social Robot Navigation

Social robot navigation constitutes a significant thrust of human-robot interac-

tion research over the past few decades [27, 88, 133]. Particular emphasis has

been placed on the design of autonomous socially aware navigation planning

algorithms and on the study of the interaction between navigating robots and

humans. Researchers have been inspired by the mechanisms underlying human

navigation [148] and general human behavior in public spaces [51, 58]. This has
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led to the adoption of theory, models and methods from the field of cognitive

science [109], psychology [145] and sociology [148] into the design and evalua-

tion of proposed navigation frameworks. However, the complexity and cost of

building and testing an autonomous robotic system often prohibits a systematic

and thorough experimental validation of navigation frameworks. This section

presents a classification of state-of-the-art approaches with respect to their type

of validation.

1.2.4.1 Simulation Studies

Recent advances in the fields of graphics [63, 71, 142] and crowd dynamics [62,

67] were based on physics-inspired models of the interactions among multiple

navigating agents: socially compliant and humanlike motion is generated as

the result of multiple interacting potential fields, representing agents’ objectives

and intentions. This foundational idea has set the conceptual basis behind the

design of a number of approaches in the field of social robot navigation.

Luber et al. [94] learn a set of dynamic navigation prototypes from a human

trajectory dataset and use them for trajectory prediction and generation. They

demonstrate the performance of their planner with respect to the efficiency and

humanlikeness of generated paths on 182 scenarios of the same dataset and

show how it outperforms a rule-based, proxemics-theory enforcing baseline.

Vasquez et al. [143] learn a cost function to represent the dynamics of social

navigation by training on a dataset extracted by teleoperating a robot in dif-

ferent real-world scenarios. They evaluate the ability of their learned model

to reproduce trajectories of social compliance, modeled as a composite score of

cost functions representing human comfort. Finally, Bera et al. [17] make use of
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concepts from Personality Trait theory to classify the behavior of pedestrians to-

wards informing their motion models and a robot’s path planning. Simulation

results demonstrate improved trajectory prediction and more socially compliant

on a number of human datasets.

1.2.4.2 Experimental Demonstrations

A number of works have presented important experimental demonstrations in

human environments to validate their approaches. Althaus et al. [6] focus on

the problem of social engagement. They build a robot designed to approach

humans and engage in a conversation with them. They present control laws

for approaching a person and maintaining a socially acceptable distance. A

recorded experiment with three participants demonstrates the efficacy of their

approach. Sisbot et al. [123] presents a cost-based planner that considers a set

of social heuristics at the planning stage to generate motion that is visible and

safe around humans. A series of documented interactions between the robot

and a human in a lab environment demonstrate the capabilities of the frame-

work. Lam et al. [90] present a motion planner, designed according to a set of

”harmonious” rules, inspired by the theory of proxemics [58]. Their framework

is shown to respect human zones of personal space in a series of experiments

of close interaction. Park et al. [114] build an automated wheelchair and design

a model-predictive control law for smooth motion generation in crowded en-

vironments. Their approach treats humans as dynamic obstacles and focuses

on avoiding them smoothly. They test their framework in an indoor environ-

ment and report a set of successful collision avoidance processes under crowded

settings. Kretzschmar et al. [86] employ an inverse reinforcement learning ap-
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proach to learn the social components of human navigation by training on an

hour-long lab dataset of four navigating humans and on a public dataset on a

crowded scene. They deploy the model on a robotic wheelchair that is able to

navigate socially next to navigating humans in a narrow hallway. Finally, Chen

et al. [28] present a deep reinforcement learning approach to learn social norms

(passing from the right-hand side and overtaking on the left) from a synthetic,

simulated dataset. They report an experimental demo, run in a large, crowded

academic building.

1.2.4.3 Experimental Studies

A significant body of work has employed field studies in crowded environ-

ments such as museums, malls or academic hallways. Thrun et al. [134] present

a tour-guide robot equipped with a set of probabilistic algorithms for map-

ping, localization, people-tracking, and planning. The robot interacted suc-

cessfully with thousands of visitors for two weeks in a busy museum. The

authors present a comprehensive report of the robot’s log and a classification

of observed types of interaction between the robot and visitors. Bennewitz et al.

[16] cluster a dataset of observed human trajectories into a set of classes and

use it for on-line prediction on a robot. A series of 10 experiments indicates

increased time-efficiency resulting from their approach, compared to a linear

prediction baseline. Pacchierotti et al. [113] implement and test a proxemics-

based control framework on an autonomous robot through a user study, con-

ducted in a corridor. A total of 10 participants were exposed to three different

conditions corresponding to the robot passing next to them with a different lat-

eral distance each time. Users’ ratings showed that humans felt uncomfortable
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when the robot was closer to them. Foka and Trahanias [48] present a prob-

abilistic algorithm that makes predictions about future human paths to plan

collision-free motion. They report logs and performance aspects upon running

the robot for 70 hours in an indoor academic building. Kirby et al. [80] present

a constrained optimization-based algorithm that incorporates a series of social

conventions, such as passing-side conventions and respect of humans’ personal

space into the robot’s decision-making. A user study involving 27 human sub-

jects navigating alongside a robot in an academic hallway demonstrated evi-

dence that humans interpret the robot’s behavior as socially appropriate [79].

Shiomi et al. [122] present a planner, based on the social force model [62] for

generating humanlike collision avoidance navigation behaviors. A 4-hour field

study in a shopping mall demonstrated that the proposed approach achieves

safer and more comfortable interaction than a baseline. Trautman et al. [138]

present a navigation framework that explicitly incorporates the assumption of

human cooperation into their learned trajectory prediction model to enable a

robot to navigate among dense human crowds. They report the performance

of a real robot in terms of safety and efficiency in a large-scale field study (488

runs), conducted in a crowded cafeteria. Kato et al. [74] learn a model of human

intent inference to generate social approaching navigation behaviors. They test

their approach on a humanlike robot employee in a crowded mall and record

interactions with 130 people, suggesting that a compromise between proactive

and passive approaching behavior is preferred by humans. Kim and Pineau [78]

learn a model of socially compliant robot motion from human demonstrations

and robot teleoperations in crowded environments. They test their approach

on a robotic wheelchair in a crowded hallway and report humanlike and ef-

ficient performance in 10 field runs. Truong and Ngo [140] fuse elements of
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the social force model [62] and the Reciprocal Velocity Obstacle model [142] to

generate socially aware robot motion in crowded scenes. Examples from ex-

periments, conducted in an office environment demonstrate smooth operation

against static or moving obstacles.

1.2.5 Topological Representations for Multi-Agent Navigation

In the area of decentralized multi-agent navigation, a significant portion of the

literature typically assumes that navigating agents employ policies with shared

architecture, with notable examples including the Social Force [62] and Recip-

rocal Velocity Obstacle [142] frameworks as well as more recent algorithms of

similar basis (e.g. Moussaı̈d et al. [109], Karamouzas et al. [71]). These works

do not make explicit predictions of other agents’ trajectories but make decisions

under strong assumptions on their behaviors. The problem of predicting the

trajectories of multiple navigating agents in real time and for an adequate hori-

zon to allow for motion planning is challenging, as suggested by the literature

on tracking (e.g. [95]). This has motivated roboticists to look for more practical

alternatives for multi-agent motion prediction. In particular, several approaches

have leveraged the coupling of agents’ decision-making in multi-agent naviga-

tion as a way to guide the motion planning process. Some of them have em-

ployed learning techniques [28, 78, 86, 138] to develop models for prediction

and generation of humanlike trajectories whereas others have employed heuris-

tics to directly exploit the topological structure of the problem [81] as a more

tractable alternative to explicit trajectory prediction. A topological representa-

tion provides several benefits including robustness of computation, increased

expressiveness and a formal enumeration of possible classes of joint behavior.
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Our work aims at directly leveraging these benefits; we propose a series of plan-

ners that focus on predicting the topology of an emerging multi-agent behavior

rather than its geometry. This type of prediction is robust to minor variance in

the assumed decision-making mechanisms of other agents, as it ignores local

features, in favor of global emerging patterns.

More specifically, it can be observed that multi-agent navigation of ratio-

nal agents in a bounded environment has an interesting property: agents’ deci-

sion making is spatiotemporally constrained. This property arises from: (1) the

fact that agents cannot occupy the same configuration at the same time and (2)

driven by their rational decision-making mechanisms, they have an incentive to

move efficiently towards their destinations, while avoiding collisions with the

workspace boundary and each other. This property may be traced at the entan-

glement of agents’ trajectories throughout the execution of a multi-agent scene.

Agents’ trajectories may be thought of as strings that become knitted around

each other, according to agents’ navigation strategies. This knitting has topo-

logical properties which can be studied with tools from the low-dimensional

topology (the field of topology that studies topological spaces of four or fewer

dimensions). This thesis has been heavily inspired by the described structure

and makes use of a series of formalisms, metrics and computational tools to

leverage its existence. Imbuing artificial agents with a model of this structure

enables them to incorporate a notion of social compliance into their decision

making. More broadly, we find that the use of topological representations for

modeling, perception and planning problems in robotics could offer significant

benefits, including a greater potential for generalizability across diverse do-

mains and inherent model explainability through the affordance of a qualitative

reasoning.
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More specifically, the foundation of this work is the topological construction

of braids from the field of low-dimensional topology [73]. The formalism of

braids, first presented by Artin [10, 11] and extensively studied by Birman [20]

has been an inspiration for applications in various disciplines. Our approach

is specifically inspired by the use of braids as a model that captures the entan-

glement of particle trajectories in a fluid [131]; in a similar fashion, we employ

braids to model the entanglement of the trajectories of navigating agents.

The idea of employing braids in planning problems in robotics is not new.

It may be traced at least as back as to Ghrist [49], who drew a parallel between

braids and configuration spaces of robotic systems. Later, a few works pro-

posed planning frameworks for explicit coordination of multi-agent systems,

using braids as prototypes of multi-robot collision avoidance maneuvers. In

particular, Hu et al. [68] presented an optimization-based framework for de-

termining low-energy conflict resolutions among multiple coordinating agents,

navigating on a plane, whereas Diaz-Mercado and Egerstedt [36] developed a

framework for centralized multi-robot mixing.

Although we are also making use of braids to model multi-robot behaviors,

the scope of our approach is inherently different, since our target application

concerns navigation in dynamic environments where no explicit communica-

tion takes place among agents. In our case the agents do not follow a pre-

specified or decided-upon braid pattern, but rather employ a braid-based prob-

abilistic reasoning to reach a topological consensus that best complies with ev-

eryone’s intentions or preferences. For our purposes, braids provide an abstrac-

tion of the complex spatiotemporal multi-agent dynamics of interaction among

agents. This abstraction enables artificial agents to reason about uncertainty
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in a principled fashion, as the dual geometric and algebraic representation of

braids enables them to enumerate a set of diverse, topologically distinct scene

evolutions.

1.2.6 Implicit Communication in Human-Robot Interaction

Humans tend to attribute meaning and intentions to observed actions, executed

by others. This process has been well studied in the cognitive science and psy-

chology literature Baker et al. [12], Csibra and Gergely [32, 33], Wiese et al. [146],

with researchers highlighting the teleological nature of human inference. Hu-

mans tend to interpret observed actions as approximately rational and hence to

attribute context-specific, goal-driven intentions to them. This mechanism al-

lows humans to leverage channels of implicit communication to communicate

more fluently by encoding communicative signals to their goal-driven actions.

Over the past few years, a significant body of work has focused on the devel-

opment of computational frameworks that leverage the existence of this mech-

anism in humans towards achieving safe, natural and effective human-robot in-

teraction [40, 66, 112, 126, 128]. At the core of this field of research is the develop-

ment of mathematical models that connect intention and action. These models

may be used directly for human action prediction (e.g. for Unhelkar et al. [141]

show how biomechanical turn indicators may improve human trajectory pre-

diction) but they can also be inverted to generate informative robot actions that

implicitly communicate the robot’s objectives. Engineering systems capable of

the latter requires a characterization of actions in terms of their communicative

properties. To this end, Dragan et al. [41] introduced the the notion of legibility
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as a property of action that allows an observer to make a correct inference of

an actor’s goal and presented a computational framework for generating legi-

ble actions [40]. Legible actions have been shown to result in reduced planning

effort for humans [23, 25] but also increased efficiency in human-robot interac-

tion applications such as human-robot handovers [126], legible robot pointing

[66], legible reaching [40], effective robot recovery from failure through verbal

communication [128], effective collaborative manipulation [112]. Such applica-

tions have also resulted in a growing interest in incorporating intention-aware

and intent-expressive systems in autonomous cars. For example, Bandyopad-

hyay et al. [13] and Ferguson et al. [46] presented navigation frameworks for

planning autonomous car navigation, based on models for predicting pedes-

trian intentions, whereas Sadigh et al. [120] proposed a planning framework

that reasons about human drivers’ mental models to plan actions that influence

their decision making towards desired outcomes.

1.2.6.1 Implicit Communication in Multi-Agent Navigation

The family of planning algorithms presented in this thesis is designed towards

leveraging the sophisticated implicit communication channels that humans have

developed [33], towards enabling mobile robots to broadcast clearly their inten-

tions through their actions, so that they are intuitively understood by humans.

In particular, it aims at manipulating an agent’s path shape to convey its in-

tentions to others. Our inference mechanism allows our agents to monitor the

uncertainty over future multi-agent behaviors and take information-rich or leg-

ible actions that aim at reducing this uncertainty.

Existing works on legible motion generation tend to associate the notion of
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a goal or intention with a point in a configuration space (e.g. [40, 87]). In a static

and structured environment, where the dynamics of interaction among agents is

predictable or known a priori, this is a well-motivated modeling decision, as the

observers’ belief could be assumed to be an isolated relationship between an ob-

served motion and a potential destination. However, in dynamic and unstruc-

tured environments, such as typical pedestrian navigation domains, where the

dynamics of interaction among multiple agents are complex, sole knowledge of

an agent’s destination may be insufficient to inform others of the agent’s imme-

diate behaviors. This highlights the need for a new consideration of legibility

that captures the interactions with neighboring agents. We contribute towards

addressing this gap through the introduction of a series of novel topological rep-

resentations that captures the collective behavior of multiple navigating agents.

This allows an artificial agent to understand and anticipate the complex emerg-

ing couplings among agents’ navigation strategies and inform its decision mak-

ing towards exhibiting socially compliant behaviors.

1.2.7 Exploiting Structure

From a broader point of view, this thesis makes a series of contributions through

leveraging domain knowledge about the problem. From a high-level perspec-

tive, our planners seek to achieve a succinct communication of the robot’s intent

(navigation strategy) to any observing (human) agents, by broadcasting a corre-

sponding signal through its action selection. This machinery directly leverages

the existence of information that is known to be publicly available to all agents

(commonly referred to as common ground, or context) and also the existence

of goal-driven inference mechanisms of the assumed-rational agents navigating
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next to the robot (for more details, please see Part I). Furthermore, the intro-

duction of topological braids into the study of problems of multi-agent collision

avoidance could also be thought of as a way to exploit their underlying structure

(see Part II). This concept is not new in engineering and especially in robotics;

in fact, the same foundation has resulted in a number of revolutionary ideas in

different research areas. In the field of navigation, both Bennewitz et al. [16]

and Ziebart et al. [151] exploit the structure of an indoor environment to extract

the patterns of human motion. The geometry of static obstacles in a pedestrian

workspace naturally gives rise to a set of clusters of collision-free human tra-

jectories. Both of these works leverage this structure to make human trajectory

prediction. In manipulation, Erdmann and Mason [43] exploit contact mechan-

ics to reorient planar objects without the use of sensors. In particular, they show

how a sequence of impacts with the environment could lead to a desired reori-

entation of a planar part. This idea has been further developed into the research

area of non-prehensile manipulation, in which a robotic manipulator exploits

the surrounding –sometimes cluttered [39]– environment to achieve a desired

manipulation task [35]. Finally, Choudhury [29] presents a family of sampling-

based planning algorithms that are designed to output high-quality solutions by

exploiting the domain knowledge about the structure of the planning problem

in consideration.

1.3 Contributions

This thesis presents a family of motion planning algorithms for socially com-

petent robot navigation in crowded, dynamic human environments with no ex-

plicit communication. The components of our algorithms are guided by prin-
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ciples extracted from studies on human behavior, whereas our extensive sim-

ulated and experimental validation presents a thorough, in-depth comparative

look at the benefits and weaknesses of our approach. In the following sections

we enlist and expand on our main contributions, grouping them into three main

classes: (a) an explicit summary of the key results presented in this thesis; (b)

a summary of some technical developments that arose in the process of accom-

plishing these results; (c) a broader perspective, arising from the consideration

of this thesis as a whole.

1.3.1 Key Results

A foundational idea underlying this thesis is the incorporation of models of

multi-agent collision avoidance into the motion planning process of a robot.

Our goal is to approach the notion of socially competent navigation, as pre-

sented by Wolfinger [148], by (1) understanding and respecting the navigation

intentions and preferences of nearby humans and (2) by implicitly communicat-

ing its own intentions to them through its actions. The following results could

be interpreted as direct consequences of this architecture:

• We show that groups of artificial navigating agents, capable of under-

standing the spatiotemporal, topological structure of multi-agent collision

avoidance are able to coordinate more efficiently with each other to avoid

collisions than groups of purely efficient (greedy) agents in 3-agent and 4-

agent scenarios with no communication on discretized domains [101, 104].

This allows them to achieve higher time/energy efficiency.

• We show that the introduction of a single navigating agent employing the
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aforementioned inference mechanism in a scene with a group of (3 and 4)

other agents navigating with a purely reactive baseline (Social Force [62])

in scenarios with no communication on a continuous domain results in

accelerated uncertainty decrease and higher efficiency for the latter ones

[105]. This result implies that the decision making of agents running our

planner simplifies the inference and planning processes for other agents.

• We show that multi-agent navigation behaviors, generated by our plan-

ning framework appear to be more legible, from the perspective of human

observers [107] than other baselines in the area of multi-agent collision

avoidance ([62, 142]). Humans are able to predict the evolution of multi-

agent scenes more confidently, accurately and faster.

• We show that human subjects walking around a robot navigating with

our architecture in a controlled lab environment appear to follow paths

of lower acceleration than another autonomous [142] and a teleoperated

baseline [108].

1.3.2 Technical Developments

In the process of producing the results above, we also arrive at the following

findings and technical developments:

• We introduce a formal framework for symbolically enumerating and clas-

sifying multi-agent navigation behaviors with respect to their topological

properties [97], through the incorporation of topological braids [20].

• We present a learned model, using the LSTM architecture [64] that out-

puts a probability distribution over future topological classes of multi-
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agent collision avoidance, given observations of agents’ past trajectories

in a multi-agent navigation scenarios [105].

• We introduce the index of Topological Complexity [42] as a measure for

multi-agent trajectory analysis [107]. Topological Complexity quantifies

the intensity of the entanglement of a multi-agent trajectory over time.

• We show that low Topological Complexity correlates with high Legibility

in multi-agent navigation scenarios [107]. In particular, according to the

findings of an online, video-based user study, the lower the topological

complexity of a multi-agent trajectory, the more accurate and faster the

predictions of human subjects about the evolution of a multi-agent navi-

gation scene are.

• We show that the introduction of a teleoperated robot into a workspace

with a group of (3) humans results in lower overall mixing among them

(lower Topological Complexity), compared to two identical conditions un-

der which the robot is running autonomously [108]. More experiments are

required to extract a generalizable conclusion but this finding appears to

highlight fundamental differences in human decision making for naviga-

tion (see Chapter 8).

• We develop the first –to the best of our knowledge– method for auto-

matically synthesizing multi-agent trajectories from symbolic topological

specifications [101]. Our method takes as input a sequence of symbols,

specifying the ways with which a set of agents should be avoiding each

other and outputs a set of trajectories, the entanglement of which satis-

fies the provided specification. We show how our method is superior to a

trajectory-optimization baseline [153].
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1.3.3 A Broader Perspective

In this section, we provide a deeper look on some of the developments described

in the previous section.

Topological Structure of multi-agent collision avoidance: We observe that in a

shared workspace, where multiple agents are navigating towards their destina-

tions, their navigation planning is spatiotemporally coupled, under the geometric

constraints imposed by the workspace bounds and the assumption of rational-

ity in their decision making. This coupling has topological properties; in the

simple case of two agents walking towards opposing sides of the same hallway,

two topologically distinct outcomes arise: collision avoidance from the right or

left hand-side. This thesis proposes a novel representation, based on the formal-

ism of braid groups [20] that captures the described decision making coupling.

This representation naturally provides a formal model for enumerating the set

of classes of topologically distinct, multi-agent navigation behaviors that could

emerge under any scenario, involving any number of agents in any type of en-

vironment. Each behavior is mapped into a unique symbol, which allows for

the construction of mechanisms for inference and symbolic planning.

Social Compliance: We leverage the described structure to introduce a novel

consideration of social compliance for multi-agent navigation. We view social

compliance as a state of consensus over a cooperative, joint, collision-free nav-

igation strategy among a set of navigating agents. Pedestrians negotiate this

strategy nonverbally, through signals broadcast by a set of modalities, such as

path shape, body posture, eye gaze, gestures etc. This perspective is motivated

and supported by studies highlighting the cooperative nature of human navi-

gation (e.g. [148]). The family of planning algorithms presented in this thesis
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aim at enabling a mobile robot to leverage an understanding of this mechanism

towards accelerating consensus with co-navigating humans.

Nonverbal Communication via Path Shape: A central consideration in the de-

sign of our algorithms is the notion of intention-awareness. We have proposed

a family of inference mechanisms, that attribute intentions to navigating agents,

according to their observed past behaviors. These mechanisms are used both

for predicting the future motion of others but also for generating compliant and

consistently intent-expressive ego motion for a robot. This design enables non-

verbal communication of the robot’s intentions via careful selection of its path

shape and allows artificial agents to be cognizant of how their actions might

be interpreted by humans around. Our framework is inspired and supported

by studies on the mechanisms of goal attribution in humans (e.g. [33]), high-

lighting the natural tendency of humans to assign goals to observed actions,

executed by other agents.

Legibility in Multi-Agent Navigation: We cast the problem of achieving con-

sensus over a navigation strategy as the problem of minimizing their corre-

sponding uncertainty. We model uncertainty as the Information Entropy of the

probability distribution over joint navigation strategies. Minimizing Entropy

corresponds to maximizing agents’ Information Gain regarding the unfolding

joint navigation strategy. Our algorithms make use of the Entropy cost as a

heuristic towards the selection of intent-expressive actions. This mechanism for

generating informative actions is in parallel to the definition of Legibility cost by

Dragan and Srinivasa [40] but represents a broader, model-free consideration of

Legibility as the property of intent-expressiveness.

Potential for Generalization: The use of topological representations provides
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the potential for generalization to any environment geometry with any number

of agents. Furthermore, the incorporation of principles from studies on human

navigation into the design of inference mechanisms provides the potential for

generalization to any type of context. However, in the context of this thesis, we

have not conducted relevant studies to validate these hypotheses in practice.

Evidence that Topological Planning is Sufficient: The majority of works in

multi-agent navigation employ short-term geometric trajectory predictions to

account for collision avoidance. We argue that the cooperative nature of human

navigation renders detailed trajectory prediction unnecessary, as long as con-

sensus among agents is reached over a joint navigation strategy. Although we

have not directly proven this statement, the performance of our algorithms –all

of which are based on the prediction of trajectory topology– attest to this. Intent

expressiveness, combined with inference and trust allow for a qualitative type

of prediction, similar to the type of prediction that humans employ.

Extensive Validation: To the best of our knowledge, our work is unique in terms

of depth and thoroughness of validation within the area of social robot naviga-

tion and social robotics more broadly. In particular, we present evidence ex-

tracted from: (1) a series of simulation studies, demonstrating the performance

of our framework with respect to a set of trajectory quality measures of social

compliance; (2) an online, video-based user study with more than 180 partici-

pants, indicating that humans perceive the motion generated by our framework

as more intent-expressive; (3) an experimental study, featuring a principled and

original study design, conducted in a controlled lab environment with 105 hu-

man participants, suggesting that human acceleration tends to be lower when

navigating next to a robot running our framework.
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1.4 Published Content

The work presented in this thesis is based on material that has been published in

peer-reviewed workshop papers and proceedings of international conferences

and journals.

The foundation of our research direction was our general mathematical frame-

work for implicit communication via Entropy minimization [84]. This work

motivated the idea of constructing a probabilistic mechanism for inference of

multi-agent navigation strategies to be used as a tool for accelerating consen-

sus in multi-agent navigation scenarios with no explicit communication. To do

so, we introduced a representation for enumerating joint navigation strategies,

based on the formalism of topological braids [97] (preliminary versions [98–

100]) and incorporated it into the Socially Competent Navigation (SCN) planner.

We presented evidence from extensive simulated evaluations in a discretized

workspace with homogeneous agents, suggesting that SCN results in increased

efficiency [104]. We then extended our framework to account for more realis-

tic, continuous domains, through the incorporation of a learned mechanism for

inferring navigation strategies. We conducted extensive simulated evaluations

on a circular workspace and showed that our approach enables heterogeneous

agents (not running our planner) to achieve increased efficiency [105] (prelimi-

nary version [106]).

The high computational costs of SCN motivated us to develop Social Mo-

mentum (SM), a cost-based planner that reasons about pairwise collision avoid-

ance maneuvers instead of joint strategies. We presented evidence, extracted

from an online, video-based user study with more than 180 participants, sug-
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gesting that humans find the motion generated by SM as more legible, com-

pared to widely used baselines for multi-agent simulation [107]. Furthermore,

we conducted an extensive experimental validation of SM in an experimental

study involving a Beam Pro telepresence robot, navigating around groups of

human participants in a controlled lab environment. We found evidence sug-

gesting that humans navigating around a robot running SM exhibit smoother

motion than two other considered baselines (a teleoperated one and another,

widely employed autonomous one) [108].

Finally, we extended the SM planner to perform online multi-agent trajec-

tory prediction for robust navigation in environments with multiple agents with

changing intentions or agents without collision avoidance capabilities/intentions.

This framework –named Topologically Adaptive Navigation Planning (TANP)-

is based on the simultaneous generation of a set of topologically distinct multi-

agent trajectory predictions, generated by a physics-inspired mechanism, based

on a system of virtual vortices. Extensive, comparative simulations demon-

strated the efficacy of our approach [101] (preliminary versions [102, 103]).

1.5 Overview

This thesis is organized into five parts. We explain this organization and de-

scribe how parts relate to each other.

Part I provides a mathematical framework for implicit communication in

Human-Robot Interaction (HRI) and motivates the technical development un-

derlying this thesis. Then, the three following parts present three generations of

motion planning frameworks, building on the theoretical basis of Part I and on
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the observed topological foundations of multi-agent collision avoidance.

Part II introduces the concept of planning by reasoning about joint navi-

gation strategies. We model joint strategies as topological braids and design a

probability distribution that predicts a joint strategy from observation of agents’

past behaviors. We then present a cost-based planner that generates intent-

expressive robot motion by minimizing the entropy of the distribution over

joint strategies. We conduct an extensive simulated validation of the proposed

approach, considering a series of challenging multi-agent navigation scenarios.

Part III builds on part II, introducing our Social Momentum planning frame-

work. The basis of the Social Momentum framework is the decomposition of

a joint navigation strategy into a set of pairwise collision avoidance maneuvers

between the robot and all other agents. Our framework makes use of the phys-

ical quantity of angular momentum as a heuristic for inference of pairwise col-

lision avoidance intentions between the robot and other agents. A cost-based

planner generates motion of maximal compliance between the intentions of

the robot and the intentions of surrounding agents. Extensive simulated tri-

als and two user studies (one online, video-based study and one experimental,

lab study) demonstrate the efficacy of our approach.

Part IV combines the central ideas from part Part II and Part III and presents

a framework for online, multi-agent trajectory prediction. This framework is

based on the generation of multiple, topologically distinct multi-agent naviga-

tion strategies at every replanning cycle towards enabling a robot to react ro-

bustly to changes of a dynamic environment. Simulation results demonstrate

the ability of the robot to maintain a smooth behavior under challenging con-

ditions involving the emergence of agents with changing intentions or agents
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with heterogeneous policies.

Finally, Part V summarizes the findings of this thesis and provides conclu-

sions and directions for future work.
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Part I

Implicit Communication for

Human-Robot Interaction
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CHAPTER 2

A MATHEMATICAL FRAMEWORK FOR IMPLICIT COMMUNICATION

IN HUMAN-ROBOT INTERACTION APPLICATIONS

Actions performed by an agent (actor) in the presence of another agent (ob-

server) comprise two aspects: functional and communicative. The functional

component achieves the goal of the actor, whereas its communicative compo-

nent expresses additional information to the observer. In the absence of explicit

communication channels between the agents (e.g. verbal communication), the

interpretation of the communicative component is restricted to be done by lever-

aging information that is public to both, known as common ground. Much of

human communication is performed through this implicit mechanism, and hu-

mans cannot help but infer some meaning – whether or not it was intended by

the actor – from most actions. In fact, humans instinctively perform this infer-

ence, thus reading additional meaning about the intent of an action [33], and it

is not even uncommon to treat information gleaned implicitly through inference

as though it had been stated outright.

We argue that it is crucial for robots collaborating with humans (e.g. col-

laborative furniture assembly Figure 2.1) or operating in close proximity with

them (e.g. navigating pedestrian environments Figure 2.2) to model humans’

inference mechanisms. Humans will instinctively make use of them for both

inferring the meaning of observed actions but also for generating their own ac-

tions and they will also expect others to do so. We further argue that if a robot

fails to attend to a human’s interpretation of its own actions through the implicit

communication mechanisms, then people will perceive the robot’s purely func-

tional actions as sending random implicit signals, sowing confusion. Therefore,
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Figure 2.1: Robots that collaborate with humans, such as in an assembly
task [83], must consider the correctness of both the functional and commu-
nicative aspects of their actions.

social compliance, human comfort and robot task performance in a variety of

settings and contexts rely heavily on robots’ understanding of humans’ implicit

communication mechanisms. As a result, the area of implicit communication in

human-robot interaction applications has received a significant amount of atten-

tion over the recent years, complementing the more established area of explicit

human-robot collaboration [5, 38, 53, 59, 60, 96, 147]. Implicit communication is

identified by various terms in differing contexts. For example, in robot motion,

including reaching [41] and social navigation [107], it has been termed legibil-

ity, whereas in natural language generation for HRI, it has been called inverse

semantics [83]. In both of these cases, the meaning is extracted by leveraging

common ground. Common ground constitutes also the core of conversational

implicature [56], a well-studied area in the field Linguistics. Observing the simi-
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Figure 2.2: Robots operating in close proximity with humans, such as in
pedestrian environments need to be cognizant of the communicative effects
of their actions in order to ensure human comfort and social compliance.
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larities among these works, the goal of this chapter is to unify them by explicat-

ing a common mathematical framework that underlies all of them. In particular,

we introduce: (a) a unifying mathematical framework describing how and why

people implicitly communicate information on top of functional behaviors; (b)

formal expressions for encoding and decoding communicative actions; (c) col-

lected example applications to illustrate the theory.

2.1 Implicit Communication in Human Activities

Humans are able to express a multitude of ideas “in code”, by means other than

explicit natural language statements. Motivations for implicit communication

include efficiency, tact, group cohesion, and social bonding. In this section, we

give examples of several categories of implicit communication. Message cate-

gories include expressing intent, coordinating plans, and conveying informa-

tion. Broadly, these categories all fulfill the role of setting expectations, and we

consider each separately.

Social navigation is among the most superficial forms of interaction, yet it is

rife with implicit communication. In social navigation, the objective is to avoid

collision with co-inhabitants of the space and reach one’s destination. Com-

bined, these objectives comprise the navigator’s intent. Collision avoidance

without intent expression is only the barest definition of correct navigation – it

alone would not be judged as competent behavior by fellow pedestrians [123].

Competence demands that we convey our intended trajectory to nearby ob-

servers. We trust in return that they will convey their intent to us. Such intent-

expressive actions minimize the global uncertainty about future motions of the

agents (humans or robots) in the scene, leading to smooth and stable motion.
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We borrow from Barbalet [14] the definition of trust as “the confidence that an-

other’s actions will correspond with one’s expectations.” In the absence of so-

cial trust, people begin to behave defensively, and the efficiency of motion drops

globally in response.

Coordination among team-mates engaged in a joint activity requires setting

expectations of future actions. Consider the simple example of Steve and Cathy

assembling furniture together, in which a number of screws must be inserted

and tightened. Steve might pick up the screwdriver, which achieves the func-

tional objective of readying Steve to tighten screws. In context, the action also

implies that Cathy should gather screws for insertion in order to help. Since

Steve is cooperative, Cathy knows that once she begins to insert screws, Steve

will fulfill his implicit promise to tighten them.

Beyond forecasting actions, team-mates might also try to convey informa-

tion about their capabilities. Human interactional expectations are broadly gov-

erned by a common set of human functional and social capabilities, whereas

humans are largely uninformed about a robot’s true capabilities. Therefore,

robots will likely find themselves being judged according to the wrong stan-

dards. Although humans show patience for robots that fail under the right

conditions, a robot that seldom works as expected will likely not remain in

use, even if the failure is one of expectations rather than capabilities. Properly

setting expectations allows human team-mates to avoid being disappointed by

robots [26, 89, 92].
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2.2 Framework

In this section, we describe a framework for implicit communication, modeled

as a single-shot act.

2.2.1 Definitions

In coordinated activities, Clark [30] distinguishes among several related con-

cepts. A joint activity engages a group of two or more agents in acting together

toward a common goal. Examples include a marriage ceremony, a classroom

lecture, and a football game. Within the context of a joint activity, participants

perform joint actions, which continuously unfold over some period of time. A

specialization is the joint act, which is a one-shot joint action. For example, in the

joint activity of playing golf, yelling “fore!” is a joint act by which the speaker

warns any listeners of a wayward flying ball (their avoidance response, in con-

trast, is an individual act, performed without consideration of how it will affect

the group). The fact of an act being joint or individual is purely a matter of the

mental state of the involved agent(s).

Participation in a joint action may be asymmetric – for example, speech is a

joint action involving a speaker and listener. Note that the listener actively par-

ticipates by comprehending and back-channeling (nodding, saying “uh-huh”,

etc.). Knowledge comprises information believed by an agent to be true and

is collected into a set of facts, each with associated confidence. Compulsory

asymmetry occurs in a joint act or action when one individual, the actor, shares

knowledge with one or more observers. Thus, an important aspect of the joint
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action is to communicate information. Frequently, an actor embeds information

implicitly in an otherwise purely functional action as part of the joint activity to

perform implicit communication.

Any communicative action will be perceived by an observer with a certain

level of surprisal, which is an encoding of how probable the observer believes

the action to be given the context. As Hohwy [65] states, surprisal is a declining

function of probability: the higher an observer’s surprisal, the more improb-

able the observer believes the action to be in the given context; the lower an

observer’s surprisal, the more probable the observer believes the action to be in

the given context. Common-sense knowledge and a shared understanding of

the context allows an actor to gauge how surprising her action will be to an ob-

server, which in turn shapes her choice of action depending on the information

she would like to convey. In the remainder of this section, we show that greater

surprisal corresponds with a more strongly-conveyed message (i.e. the action is

more meaningful).

2.2.2 Foundations

The interplay of two sets is at the core of the framework. A comprises all possi-

ble actions, whereas M is composed of all possible facts about the world.

In the course of a joint activity, an agent performs a series of actions (includ-

ing single-shot acts) a1, a2, . . . , an 2 A. Each action accomplishes both functional

and communicative goals to varying degrees. Let Af ✓ A be the set of (possibly

many) different ways of accomplishing the functional goal of the action. Thus,

Af can be thought of as a subgoal of the shared goal of the joint activity.
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An agent Q performs actions in a context MQ comprising a set of facts m1,m2,

· · · 2 MQ
⇢ M that capture information about the individuals’ knowledge.

Only by leveraging this context can implicit communication occur. MQ ex-

presses Q’s beliefs about the world, including the state history of all agents

in the joint activity, the observable scene, properties of objects within it, and

common-sense knowledge. An individual fact m 2 MQ can have an associ-

ated confidence, thus allowing facts in MQ to be added, removed, or changed

following the observation of an action.

MQ is divided into several components. Knowledge that all participants in

an interaction know they all share is public knowledge, Mpub, also called com-

mon ground. Other knowledge is not known to be public; agent Q’s private

knowledge is denoted MQ

priv. Q may be aware that a subset of the other agents

know fact m 2 MQ

priv. It is even possible that every agent in a joint activity pri-

vately knows m. In both cases, m /2 Mpub unless all agents are all aware that m

is shared by all. Q’s total knowledge MQ is equal to Mpub [MQ

priv.

Finally, the distribution P(a|M) describes the likelihood that a specific agent

may next perform action a in the specific context M . Even if we restrict the scope

of a to actions that accomplish a particular goal, there may be a set of possible

actions (Af ✓ A) to choose among. Some of these actions will be preferred over

others for reasons of efficiency, simplicity, or custom.

Posit that the following common understandings are agreed upon by all par-

ticipants in the joint activity:

• the set of alternative actions Af that would accomplish a functional goal

• the common ground context model Mpub
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• the action distribution P(a|M) (for plausible M ⇢M)

2.2.3 Implicit Communication Criteria

The goal of agent Q is to perform an action â 2 Af that satisfies functional goals

while also communicating fact m̂ 2 MQ

priv. However, it is not always possible to

communicate an arbitrary fact m̂ implicitly, nor is it always possible to commu-

nicate implicitly via an action â.

The key idea is for the actor Q and observer R to leverage the common un-

derstandings in order to achieve implicit communication. Q selects an action

that is surprising to R, i.e. perceived by R as improbable in the given context.

However, R does not treat the improbable â as a fluke – rather, it triggers her to

seek an explanation in the form of a previously-unknown fact m̂ that resolves

the surprise. For R to correctly interpret Q’s intended meaning, we propose

that action â and fact m̂ must meet four implicit communication criteria:

1. 9â, a0 2 Af : â 6= a0

2. P(â|Mpub) < P(a0|Mpub)� "

3. P(â|Mpub) < P(â|m̂,Mpub)� "

4. 8m 2M\Mpub [ {m̂} : P(m|â,Mpub) < P(m̂|â,Mpub)� "

The " term incorporates variation caused by personal preference and noise.

The strength of a given implicit communication is measured as the largest pos-

sible " satisfying the criteria above. Criteria 1–2 govern the actor’s generation

of implicit communication, whereas criteria 3–4 govern the observer’s ability to

correctly interpret the intended meaning. We speak of the fact m̂ as the meaning
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of the action because it explains Q’s choice of action. We next provide additional

insight into each of the criteria.

Criterion 1 requires that there must be at least two feasible, distinct actions

that accomplish the functional goal, but preferably there are many more. An

example of Af that violates this criterion is placing a telephone call. Neglecting

timing and caller ID, there is only one way to make somebody’s telephone ring,

leaving no room for a surprising choice of action.

Criterion 2 triggers the observer to search for an explanation of why the actor

chose action â over the more obvious choice, a0. This criterion fails in situations

where there does not exist an action â that is a priori substantially less probable

than others. An example situation that violates it is one’s first time visiting a

clown convention, where normally-improbable actions are expected and hence

unsurprising.

Criterion 3 requires that the fact m̂ will be easy for the observer to verify

as an explanation of â. That is, â is unsurprising when m̂ is known. A well-

known historical violation of this criterion was John Hinckley, Jr.’s attempted

assassination of President Ronald Reagan in order to gain the favor of actress

Jodie Foster – it is unclear how shooting the president is intended to convey

infatuation.

Criterion 4 states that no other inferred meaning m is equally or more likely

than the intended explanation m̂. There are many example violations of this cri-

terion in the form of hand gestures that take different meanings across cultures

and geographies. One case in point is a gesture that variously signifies a Satanic

association, infidelity, and a college football team in Texas. All three forms have
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famously been used by politicians. Only by understanding each individual ac-

tor’s Mpub at the time he made the gesture can we disambiguate among the three

meanings.

2.2.4 Understanding and Generation

Suppose that an agent Q hopes to convey some information, m̂ 2MQ

priv, to agent

R without resorting to disclosing it explicitly. Q selects an action â consistent

with the implicit communication criteria, and R determines â to be an improb-

able action given what he knows. R, believing Q to be rational, hypothesizes

that there must be some unknown factor m̂ that explains seeing Q perform â. R

thus searches over a set of plausible facts M and chooses m̂ to be the fact with

the highest posterior probability given â and Mpub. Maximizing this probability

minimizes the surprisal that resulted from Q performing â, which in turn causes

â to become increasingly stronger evidence for R’s hypothesis [65]. Hence, upon

seeing â, R proceeds to infer

m̂ argmax
m2M

P(m|â,Mpub), (2.1)

and thus R concludes that m̂ 2MQ

priv, i.e. Q believes m̂ to be true. Using Bayes’

rule, we can re-express (2.1) as

m̂ argmax
m2M

P(â|m,Mpub)P(m|Mpub)

P(â|Mpub)

=argmax
m2M

P(â|m,Mpub)P(m|Mpub).

Note that the prior P(m|Mpub) serves to prevent “conspiracy theories” that would

otherwise result when noise gets mistakenly interpreted as signal. That is, the

fact being communicated must have a reasonably likely prior probability. For
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example, if Bob looks up at the night sky and sees a star twinkling, he is unlikely

to attribute it to a UFO, given that the prior probability of discovering intelligent

extraterrestrial life is small and that there is a more plausible explanation rooted

in turbulence of the atmosphere.

Next, we turn to the generation problem. The structure of the generation

problem is identical to understanding, except that we now search over actions

instead of facts,

â argmax
a2Af

P(m̂|a,Mpub). (2.2)

Applying Bayes’ rule again, we can re-express (2.2) as

â argmax
a2Af

P(a|m̂,Mpub)P(m̂|Mpub)

P(a|Mpub)

=argmax
a2Af

P(a|m̂,Mpub)

P(a|Mpub)
.

The resulting expression selects the action for which contributing m̂ to the com-

mon ground boosts P(a|Mpub) by the greatest amount. See Figure 2.3 for an

illustration.

We expand on these ideas and provide examples in Section 2.4, but first we

broaden our discussion to include implicit communication occurring over time

and in service of joint goals.

2.3 Achieving Joint Goals

In a joint activity, rational agents interact with each other and make decisions

towards achieving joint goals. These goals could range from completing a col-

laborative assembly task to smoothly avoiding each other while navigating in a
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hallway. Relying only on implicit communication to achieve joint goals requires

the establishment and reinforcement of trust. Implicit communication leverages

trust to influence the observer’s belief and converge to a consensus that is ben-

eficial for the accomplishment of a joint goal. In this section we state our model

for trust and propose an index for monitoring its evolution in order to inform

decision making.

2.3.1 Trust

Ordinarily, participants in a joint activity act rationally and cooperate to achieve

shared goals [61]. This policy forbids deception and supports the assumption

that the common understandings (Section 2.2.2) are shared by all participants.

Given the great diversity of knowledge and experience among people, however,

this assumption is perhaps too strong to apply universally.

In particular, during interactions with strangers, we may be unfamiliar with

one another’s judgments regarding Af , Mpub, and P(a|Mpub). If we define trust as

confidence in another agent’s future actions [14], then it is natural for one agent

to restrict their trust of another based on the limits of common understandings

among the individuals, even when all agents behave rationally.

Another obstacle to trust is discrepant beliefs about facts. We allow facts

about the beliefs of others to enter Mpub. Thus, it can simultaneously be part of

the common ground that G believes mG and that H believes mH, even if mG and

mH conflict. G and H are then free to leverage either of these facts in the gener-

ation and understanding of implicit communications between them. Epistemic

logic [44] provides tools for representing and analyzing such scenarios. Each
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conflicting fact introduces additional uncertainty into the communication pro-

cess because the observer must infer which fact the actor premised the commu-

nication upon. Thus, trust degrades with the number of discrepancies among

beliefs within a joint activity. Beyond some limit, implicit communication be-

comes impossible.

2.3.2 Consensus

In a joint activity, agents take actions with functional effects (which contribute

to reaching the joint goal) but also with communicative effects. One category of

communication, conveying intentions, serves to convey a preference or desire

regarding a joint strategy S for accomplishing the goal. The joint strategy can be

thought of as the sequence of subgoals of the joint activity, A0
f , A

1
f , . . . , A

n
f , and

is drawn from the set of all possible strategies S .

A consensus for each subgoal in the joint strategy may unfold gradually or

abruptly during the course of the joint activity. As the agents act, the public

knowledge Mpub is updated along with the agents’ beliefs regarding the emerg-

ing strategy P(S|Mpub). Under the assumption of rationality, as formulated in

our trust model (Section 2.3.1), a group of competent agents taking actions bear-

ing implicit communication signals will be able to achieve consensus over the

joint strategy S. This essentially means that P(S|Mpub) (which we assume is

shared by all agents) will converge to a distribution that clearly indicates the

emerging joint strategy. The entropy of this distribution is a measure of that

convergence.
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2.3.3 Receptivity

In many joint activities, time and timing are critical attributes of an action. Tim-

ing itself often conveys meaning, which we therefore consider as an attribute

of an action â 2 Af . Another important aspect of timing is its role in choosing

whether (and when) to implicitly communicate. Participants in a joint activity

are not equally receptive at all times to certain forms of implicit communication,

particularly with regard to consensus over the joint strategy.

When participants in a joint activity lack consensus about a joint strategy,

they cannot coordinate effectively to achieve shared goals. Rational agents there-

fore strive to reach consensus as early in a joint activity as possible in order to

maximize coordination efficiency. Consequently, the bulk of implicit commu-

nication for consensus should occur towards the beginning of the joint activity.

As a joint strategy S⇤ emerges and consensus is reached, the agents might favor

more predictable, less communicative actions, or they might utilize the implicit

communication channel for other purposes. More generally, the implicit con-

sensus formation aspect of joint actions may wax and wane according to the

group need. Consequently, there arises the need for monitoring (1) the state of

consensus P(S|Mpub) and also (2) how receptive the group of agents is to the

communicative signals being transmitted.

We formalize this monitoring process by introducing a Receptivity score, as

Receptivity = �
X

S2S

P(S|Mpub) log(P(S|Mpub)) (2.3)

which is the information entropy of the distribution over joint strategies, given

the common ground, P(S|Mpub). Recall that common ground includes the ac-

tion history within a joint activity. Intuitively, receptivity measures the willing-
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ness of individuals in a group to update their beliefs about the joint strategy,

inversely proportionate with clarity. Since Mpub is sequentially updated over

time, receptivity reflects the way the agents incorporate observed communica-

tive signals into their own actions. The lower a receptivity score gets, the closer

the agents are to a consensus over a joint strategy S⇤. To avoid second-guessing

a settled joint strategy, an observer suppresses strategy changes of a larger mag-

nitude than the current receptivity level.

A consequence of a decline in receptivity is that agents can be less expres-

sive when it drops, since other agents will likely ignore the inputs. In a scene

with engaged competent agents, receptivity is expected to decrease rapidly, sig-

nifying a consensus in the joint activity. This decrease will influence the bal-

ance between the functional and communicative aspect of actions taken, shifting

the focus of decision making towards the functional component. Beyond some

threshold drop in receptivity, agents have become sufficiently certain about the

consensus strategy S⇤ that they may even ignore their partners using civil inat-

tention [81] to reinforce the previously agreed strategy. This behavior involves

physically looking away, “so as to express that [one] does not constitute a target

of special curiosity or design” [52]. At this point, only a major modification in

the strategy will penetrate an agent’s civil inattention.

2.4 Case Studies

In lieu of generating new experimental results, which would apply to a sin-

gle domain and communication modality, we present examples of how implicit

communication has been modeled and enforced by several communities in var-
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ious collaborative contexts and discuss how their frameworks align with our

unifying framework for implicit communication.

2.4.1 Implicit Communication through Natural Language

Speech acts are among the richest functional actions in which to embed implicit

communication.

2.4.1.1 Implicature

In this section, we give a brief background on conversational implicature. We seek

to draw parallels between implicature and other methods of implicit communi-

cation of interest in robotics. Implicature comes from pragmatics, the linguistics

subfield that studies the usage of language in context. Basic meaning that is ex-

pressed and understood by a speech act is achieved by entailment – that is, ideas

that logically and unavoidably follow from the words chosen by a speaker.

With implicature, in contrast, the speaker implicates (i.e. implies or suggests)

an idea without explicitly stating it. It is a frequent phenomenon in English, first

described by Grice [56]. Consider this example from Lappin and Fox [91]:

Ann: Do you sell paste?

Bill: I sell rubber cement. (â)

implicature: Bill does not sell paste. (m̂)

A test for conversational implicature in particular is whether it is cancelable

– that is, does there exist some phrase that, when appended to the sentence,
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cancels the meaning of the implicature? From the above example, a phrase that

cancels Bill’s implicature is “I sell rubber cement, which is what you really need

for your application.” An implicature, once canceled, implicitly communicates

nothing. The added phrase explains the initial phrase, thus increasing P(a|Mpub)

and violating implicit communication criterion 2.

When it comes to dialog, people have varied and complex motives for im-

plicating meaning rather than entailing it, including politeness, sophistication,

succinctness, and social group cohesion. A detailed consideration of these ob-

jectives is beyond the scope of this work.

Grice’s cooperative principle states, “Make your conversational contribution

such as is required, at the stage at which it occurs, by the accepted purpose or

direction of the talk exchange in which you are engaged” [56]. Indeed, the co-

operative principle bears more than a passing similarity to the pedestrian bargain

of Wolfinger [148], which entreats one to behave competently and also to trust

others to behave competently. These principles are both forms of the rational

actor assumption [61].

A vital component of conversational implicature is provided by the four

Gricean Maxims, which describe speech that obeys the cooperative principle.

The four maxims are

1. Maxim of Quantity: Make your contribution as informative as is required

(but not more so).

2. Maxim of Quality: Make your contribution one that is true.

3. Maxim of Relation: Be relevant.

4. Maxim of Manner: Be perspicuous. Avoid obscurity or ambiguity; be brief
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and orderly.

Other maxims have also been proposed, such as “Be polite.” Because ad-

herence to the cooperative principle is assumed, utterances can be interpreted

in light of these maxims. A speaker can therefore deliberately flout one of the

maxims (an improbable action, â) in order to convey that he is employing im-

plicature. Returning to the previous example, Ann must apply the following

inference steps to conclude that Bill does not carry paste.

(a) Contextual premise: it is mutual, public knowledge that Bill has complete

knowledge of the items he sells.

(b) Contextual premise: there is no contextual relationship linking sales of paste

and rubber cement (inclusive or exclusive).

(c) Assume Bill follows the cooperative principle and maxims.

(d) By (a), Bill can fully resolve Ann’s question, and by (c), he will.

(e) Only the propositions that Bill does or does not sell paste can completely

resolve the question.

(f) By (b), there is no way to infer from Bill’s answer the proposition that he

does sell paste. The cooperative principle forbids obfuscation. Thus, Bill

has flouted the maxim of relevance.

(g) Therefore, we conclude that Bill does not sell paste.

Lines (d)–(g) comprise the narrowing down and resolution of the search for

meaning in Equation (2.1).

Conversational implicature is absent when all the maxims are satisfied. One

indicates the use of implicature by selecting an action to deliberately flout one

of the maxims – in our example, Bill flouts the maxim of Relation.
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Sometimes, two maxims conflict and cannot both be satisfied with a single

utterance, in which case flouting one or the other maxim is forced. An example

of the latter occurs in the following exchange:

Mark: Where is the cat?

Sue: The cat is in the hamper or under the bed. (â)

implicature: Sue does not know where the cat is. (m̂)

Because Sue does not know where the cat is, providing either location alone

would violate the maxim of Quality. However, providing both locations con-

flicts with the maxim of Quantity because the cat is in at most one of the stated

locations. Flouting the maxim of Quality would violate implicit communication

criterion 2 because either location alone is plausible. Thus, Sue chooses to flout

the maxim of Quantity in order to trigger Mark to search for an explanation.

2.4.1.2 Inverse Semantics

Though more direct than conversational implicature, the simpler speech act of

entailment is fundamentally described by the same mathematics. Knepper et al.

[83] present the inverse semantics framework for robots generating natural lan-

guage help requests. Like most robot speech systems, the framework strives

for extremely literal communication. However, it faces a problem of finding

pithy, unambiguous means of communicating its needs in an automated assem-

bly scene cluttered with parts that lack unique names. Since words are complex

and imperfect containers for meaning, the careful selection of clear language

to achieve entailment follows the same rules of generation as described in Sec-

tion 2.2.4.
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The core of inverse semantics is a forward semantics mechanism for under-

standing natural language, the Generalized Grounding Graph (G3) [129]. This

structure takes in natural language expressions � as inputs and returns their

meanings or groundings � as outputs.

The inverse semantics framework inverts G3 to perform generation by search-

ing over the space of possible English sentences, sorted from shortest to longest,

and inputting each to G3. Inverse semantics compares the output of G3 with the

target grounding needed by the help request. The search halts with the first sen-

tence that attains over a threshold confidence match between the two ground-

ings. The expression given for generation,

argmax
�

P(�|�,�,M), (2.4)

strongly resembles our own framework’s Equation (2.2). Here, � is a correspon-

dence variable used to indicate the semantic likelihood of a match between �

and �. Like our model, M symbolizes the context model in which the meaning

is interpreted.

2.4.2 Communicative Motion

Besides natural language usage, the robotics community has studied other types

of actions. An especially expressive action class for implicit communication is

motion.
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2.4.2.1 Legibility

Let us consider again the joint assembly activity in which Steve and Cathy co-

operate to build furniture. Many forms of communicative action arise. One

class of actions studied recently by Dragan et al. [41] involves reaching motions.

Among parts cluttering a table, Steve has to pick up a particular one. The shape

of his reaching trajectory may or may not inform Cathy about Steve’s intent. A

direct reaching motion is predictable (high probability P(a|Mpub)) and therefore

not communicative. A curved trajectory, in contrast, helps Cathy to identify the

target of Steve’s reach before he gets there.

In general, assume that an actor Q is aiming at reaching a goal GQ from

a set of goals G in front of an observer R. The agents share a model P(G|⇠)

that probabilistically attributes a goal G 2 G to an observed trajectory ⇠. The

actor can leverage this knowledge to design his trajectory in a way that indi-

cates his intended goal to the observer. Following the insights of Csibra and

Gergely [33] regarding the tendency of humans to interpret observed actions as

goal-directed (teleological reasoning), Dragan et al. [41] introduced the Legibil-

ity score to quantify the intent-expressiveness of a trajectory ⇠ with respect to a

goal GQ:

Legibility(⇠) =
R T

0 P(GQ
|⇠0!t)f(t)dtR T

0 f(t)dt
(2.5)

where T is the duration of the trajectory and f(t) is a function that weights

partial trajectories ⇠0!t higher in the beginning and lower later. It should be

noted that f(t) is a proxy for the role of the observer in reducing her receptivity

(see Section 2.3.3) as Q’s intended goal GQ becomes more certain to her. The

model P(G|⇠) scores goals higher if they can be achieved efficiently (with a low

energy trajectory ⇠) and scores goals lower if they require higher energy.
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The legibility score is essentially a weighted sum of the probabilities that

the observers assign to the actor’s intended goal GQ throughout the whole tra-

jectory ⇠. Trajectories of higher legibility tend to be more curved towards the

intended goal GQ, biasing the observers towards predicting the actor’s actual

goal, while biasing them against predicting other goals. Note that a more curved

trajectory is less probable out of context due to the extra energy it expends. As a

result, it might be perceived as surprising. This surprise would trigger a search

for an explanation, which, in the perceived context, would lead to the conclu-

sion that the actor Q is aiming at reaching the goal GQ.

2.4.2.2 Dynamic Legibility

Consider now the case of a dynamic environment, where the agents are not

explicitly collaborating but since the decisions they make are coupled, it is ben-

eficial for everyone to mutually agree on a joint strategy. Assuming again no

explicit communication, the only way agents are able to agree on a strategy is to

encode their understanding and preferences into their actions.

Social navigation constitutes a representative example of this class of scenar-

ios. Although humans might not often realize that navigation in crowded en-

vironments is a collaborative activity, according to sociology studies [148], it is

established on implicit cooperation. Pedestrians follow and reinforce the pedes-

trian bargain, a social convention comprising two foundational rules: (1) “pedes-

trians must behave like competent pedestrians” and (2) “pedestrians must trust

that co-present others behave like competent pedestrians”. Since the pedestrian

bargain serves as a cooperative principle for social navigation, we may formu-

late a set of maxims for motion that echo the Gricean Maxims of conversational
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implicature,

1. Maxim of Efficiency: Be parsimonious.

2. Maxim of Motion: Do not collide with objects or obstruct another agent’s

motion.

3. Maxim of Manner: Be perspicuous and orderly.

These maxims readily come into conflict where multiple agents are present.

Much as in the case of implicature, the actor will choose to deliberately flout one

of the maxims – typically the maxim of Efficiency – in order to obey the cooper-

ative principle. It is only by considering the collision-avoidance context that an

observer is able to appreciate that by taking an exaggerated trajectory such as a3

in Figure 2.4, the global welfare is improved, as measured by increased energy

efficiency and decreased uncertainty.

Enforcing the pedestrian bargain leads to a consensus over a mutually ben-

eficial joint strategy that allows everyone to comfortably reach their destina-

tions. The agents continuously monitor the progress toward consensus and ad-

just their decision-making accordingly. Once consensus appears to have been

reached, receptivity drops to zero as pedestrians initiate civil inattention [52, 81].

Following this mode switch, agents look away from one another as a signal that

they have stopped actively avoiding each other and will instead follow their

previous planned collision-free path.
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Figure 2.4: The red, navigating agent (human or robot) selects an action â.
Out of context (top), the red agent (human or robot) is not avoiding an ob-
stacle, and so the probability of expending needless extra energy is low. In
the case of an oncoming blue agent (m̂), the likelihood of the oblivious action
P(a0|Mpub) is low due to social norms, despite being low energy. Conversely,
the normally-improbable act of spending extra energy becomes probable in
this context. An observer who sees only the red agent’s motion can infer m̂
from observing a3.

2.5 Other Examples

Teams exchange implicit information in cooperative games when the rules for-

bid free exchange of information. For example, the bidding conventions of

contract bridge allow partners to exchange information about the respective

strengths of their hands and arrive at an appropriate contract.

Finally, among married couples, this type of implicit communication eases

over time across all modalities (speech, gesture, gaze, etc.) because spouses de-

velop extremely sensitive models of P(a|Mpub), due to familiarity. Remarkably

sophisticated notions can be conveyed between spouses by careful action selec-

tion in almost any context. We have considerable work remaining before robots

can achieve a similar level of understanding of people.
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2.5.1 Tact

Implicit communication is also the primary tool of tactful communication, as it

alleviates the risk of awkwardness due to misunderstandings about what facts

the observer already knows. Reflecting on the implicit communication criteria

given in Section 2.2.3, an attempted implicit communication of a fact that the

observer already knows does not even seem like implicit communication – it

would come across as a predictable, functional action. In this case, criterion 3

is clearly violated because m̂ 2 Mpub, and criterion 2 is probably also violated

because â would seem likely.

To offer a concrete example of how speakers leverage implicit communica-

tion to achieve tact, consider a married couple discussing dinner plans:

Jack: Remember, my friend Irving is coming for dinner.

implicatures: Irving is vegetarian; Irving needs to be served a vegetarian

meal.

Kate: Let’s make my mother’s lasagna recipe.

implicatures: Kate knows that Irving is vegetarian; Kate’s mother’s lasagna

recipe is vegetarian; the recipe satisfies Irving’s need for a vegetarian meal.

Observe that this exchange can be read at two levels. If both parties are oblivi-

ous to the implicature because the sentences are judged predictable, then it is a

simple, matter-of-fact dialog.

The statements can also be read as implicature. In both cases, the implicated

statements are things that the listener should have already known. Only in the

context of the couple’s normal conversation can we judge how unusual it is for
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Jack to remind Kate about a guest (a fact she may be unlikely to forget), or for

Kate to make her mother’s lasagna recipe.

Only if these events are atypical can they truly be regarded as implicit com-

munication. However, they also serve a tactful reminder function, in case Kate

forgot about the guest or Jack forgot that Kate’s mother’s lasagna is vegetarian.

A failing memory may therefore cause an action to be judged as unusual, in

which case the reminder acts as an implicature. Thus, a related virtue of im-

plicit communication is that it allows the observer to maintain the pretense of

having already known a fact that they forgot.

2.6 Practical Implementation

Inference, both generation and understanding, is implemented as a search over

actions and facts, respectively. Techniques are needed to streamline both search

problems, due to the intractability of the literal brute force search implied by

argmax in (2.1)–(2.2). Existing implementations of instances of implicit com-

munication employ AI search-pruning techniques [83, 144] or restrict the action

space Af in order to narrow the set of options under consideration [41, 107]. In

practical terms, the set of feasible actions Af is typically hard-coded for a do-

main, raising the possibility that it mismatches with some human’s expectation.

Two people may similarly encounter a mismatch in expectation about Af . In-

terestingly, the machinery described in this work could be used by a robot to

infer that an observed human action is intended to accomplish a (surprising)

functional goal by leveraging the context, leading to extension of Af .

Another challenge is to build Mpub, the common ground model among agents.

58



A complete model is often both unnecessary (since many facts in the agents’

shared knowledge are irrelevant for the joint activity at hand) and infeasible

(since the task of modeling the full common ground presents a high cognitive

burden). As a result, Mpub need only consist of the facts that are pertinent to

the success of the joint activity. For example, in the social navigation of Mavro-

giannis and Knepper [98], Mpub might contain an updated belief regarding the

destinations and intentions of observed agents. Mpub is therefore instantiated

as the mutual understanding that the agents involved intend to participate in

the joint activity along with shared knowledge about the kinds of actions that

agents will likely take to contribute to the activity [22].

For humans, Mpub does not necessarily include all task-relevant facts at the

start of the activity. It is frequently less costly to repair a misunderstanding

that results from not sharing a piece of information than to expend the effort re-

quired to ground that piece of information through the principle of least collab-

orative effort [31, 116]. Mpub is then updated interactively throughout the course

of the joint activity, either when new information about the intents of the agents

becomes publicly available or when the agents issue a repair that helps align

their own mental models of the situation (and in doing so adds to the common

ground) [93]. Machine-interpretable ontologies using tools like RDF and OWL

address the general problem of managing and searching Mpub, as exemplified

by the KnowRob project of Tenorth and Beetz [130].

Finally, the distribution P (a|M) is generally best modeled through machine

learning. The particular context in which one takes an action affects the proba-

bilities of observing various possible actions, often in complex ways. For exam-

ple, Knepper et al. [83] employ Tellex’s generalized grounding graph (G3) [129].
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Based on a conditional random field, G3 employs a set of correspondence vari-

ables to valuate the correspondence probability of a given language phrase and

grounding concept. These learned relationships capture concepts including ob-

jects, actions, and spatial relations.

2.7 Discussion

Conversational implicature and legibility, though originating in different do-

mains, are connected by techniques of encoding and decoding meaning using

teleological inference [33]. These methods rely heavily on common ground to

provide clues about when a message is encoded on an action and what infor-

mation the message contains. The inference process can be quite complex in

real-life situations. Particularly in the case of implicature, many rules must be

brought to bear in order to correctly interpret what is being implicated. Several

authors [54, 144] show promising early results in modeling a simple form of

implicature and performing inference by model inversion.

2.7.1 A Call to Action

In the coming years, modeling of implied meaning, including through implica-

ture and legible motion, will become an increasing focus within robotics – not

least because humans already use these forms of implicit communication on

robots today. Humans are also already interpreting robots’ actions through the

lens of implicit communication. Since few robots are cognizant of the implicit

meaning of their actions, today’s robots send random signals to humans. By
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and large, humans are unable to interpret robot actions in the purely functional

manner that they are intended. Thus, the robotics research community must

find techniques to efficiently generate and understand implicit communication.

This direction will drive the need for improved modeling of common ground.

A major hurdle to performing these inferences on robots in real-world situations

is salience; today, the robot must perform a fairly undirected, brute-force search

in order to discover which elements of the context are applicable. Humans, in

contrast, seem to learn filters and partially pre-compute functions to expedite

real-time inference in ambiguous situations. These processes are not yet un-

derstood in humans, but they will need to be deployed on robots in order to

promote responsive behavior and avoid major misunderstandings.
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Part II

Planning by Reasoning about

Multi-Agent Navigation Strategies
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CHAPTER 3

MULTI-AGENT PATH TOPOLOGY IN SUPPORT OF SOCIALLY

COMPETENT NAVIGATION PLANNING

This chapter incorporates the information-theoretic point of view exposed

in Part I into the design of a motion planner for intent-expressive robot navi-

gation. Specifically, we present a navigation planning framework for dynamic,

multi-agent environments, where no explicit communication takes place among

agents. Inspired by the collaborative nature of human navigation, our approach

encodes the concept of coordination into an agent’s decision making through an

inference mechanism about collaborative strategies of collision avoidance. Each

such strategy represents a distinct avoidance protocol, prescribing a distinct

class of navigation behaviors to agents. We model such classes as equivalence

classes of multi-agent path topology, using the formalism of topological braids.

This formalism may naturally encode any arbitrarily complex, spatiotemporal,

multi-agent behavior, in any environment with any number of agents into a

compact representation of dual algebraic and geometric nature. This enables

us to construct a probabilistic inference mechanism that predicts the collective

strategy of avoidance among multiple agents, based on observation of agents’

past behaviors. We incorporate this mechanism into an online planner that en-

ables an agent to understand a multi-agent scene and determine an action that

not only contributes progress towards its destination but also reduction of the

uncertainty of other agents regarding the agent’s role in the emerging strategy of

avoidance. This is achieved by picking actions that compromise between energy

efficiency and compliance with everyone’s inferred avoidance intentions. We

evaluate our approach by comparing against a greedy baseline that only maxi-

mizes individual efficiency. Simulation results of statistical significance demon-
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strate that our planner results in a faster uncertainty decrease that facilitates

the decision making process of co-present agents. The algorithm’s performance

highlights the importance of topological reasoning in decentralized, multi-agent

planning and appears promising for real-world applications in crowded human

environments.

3.1 Foundations

Consider a set of n � 2 agents N = {1, . . . , n} navigating a workspace Q ⇢ R2.

Denote by qi 2 Q the configuration of agent i 2 N . Agent i starts from an initial

configuration qsi 2 Q at time t = 0 and reaches a final configuration qdi at time

t = Ti. The final configuration qdi corresponds to a landmark di from a set of

landmarks D ⇢ Q (we assume that di 6= dj for any two agents i, j 2 N ). The

path agent i follows to reach its destination is a function ⇠i : [0, Ti]! Q.

The agents do not explicitly exchange any kind of information with each

other but are assumed to be acting rationally, which in our context means that

(1) they always aim at making progress towards their destinations and (2) they

have no motive for acting adversarially against other agents (e.g. blocking their

paths or colliding with them). The notion of rationality is in line with the con-

cept of competence as described by Wolfinger [148] in his definition of the Pedes-

trian Bargain and also with the concept of teleological reasoning that appears to be

foundational for human inference [33].
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Figure 3.1: A human and a robot are navigating towards opposing directions
of a hallway. To avoid collision, they need to agree on an avoidance protocol
(passing from the right or left hand side of each other). The jerky behavior of
the robot so far and the smooth but non-committal –with respect to a passing
side– path of the human agent yield a high-entropy belief distribution over
an emerging avoidance protocol from the perspective of both agents. The goal
of our planner is to generate a sequence of highly-informative actions that
will rapidly reduce the entropy and break a potential livelock or deadlock
situation.
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3.1.1 Game-Theoretic Setup

Inspired by Wolfinger’s observations on the cooperative nature of human navi-

gation, we approach the problem of robotic navigation in multi-agent, dynamic

environments as a finitely repeated coordination game of imperfect information

and perfect recall. The game is repeated a finite number of rounds K, which

is unknown a priori and corresponds to the round at which the slowest agent

reached its destination. At each round k 2 {1, . . . K}, each agent i decides on

an action aki from a set of available actions (actions that could potentially lead to

collisions and actions that violate the agent’s dynamics are excluded) Ak
i by min-

imizing a cost function ui. The agents are simultaneously selecting their actions

and therefore they have no access to other agents’ plans (imperfect information);

we assume however that they maintain a history of all previous rounds (perfect

recall). The result of all agents’ decision making at round k is the strategy pro-

file Ak = {ak1, ..., a
k
n}. The sequence of strategy profiles of all rounds, from the

beginning to the end of the game, A1 . . . AK , forms a global joint strategy ⌧ that

the agents engaged in to avoid each other, while making progress towards their

destinations.

Although the agents do not explicitly coordinate with each other to decide

on a joint strategy, their strategy profiles at every round gradually reinforce

and contribute to one. Imbuing artificial agents with an understanding of the

collective dynamics of a multi-agent scene may allow them to make informed

and socially competent decisions that contribute to the avoidance of undesired

situations, such as hindering others’ paths, deadlocks and livelocks. For this

reason, besides personal efficiency, it is important that agents’ cost functions

incorporate a model of multi-agent efficiency, reflecting the social welfare of the
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system of agents.

In this chapter, we develop a topological model of joint strategies, employing

the formalism of braids [20], which we use to develop a human-inspired infer-

ence mechanism, supported by studies on human action interpretation. Our

mechanism provides a principled prediction over the scene evolution that al-

lows agents to take into consideration the effect of their decision making on any

observers.

3.1.2 A Topological Model of Joint Strategies

Let us collect the state of the system of all agents in a tuple Q = (q1, . . . , qn) 2 Q
n.

The system state evolves from a starting configuration Qs = (qs1, . . . , q
s
n) to a final

configuration Qd =
�
qd1 , . . . , q

d
n

�
, by following a path ⌅ : [0, T ] ! Q

n, from the

space of system paths Z , starting from Qs and ending at Qd. The system path

is a function ⌅ : [0, T ] ! Q
n
\�, where � = {Q = (q1, q2, . . . , qn) 2 Q

n : qi =

qj for some i 6= j 2 N} is the set of all system states with agents in collision

and T = maxi2N Ti (it is assumed that agents remain at their destinations until

everyone reaches their own). Naturally � partitions the space of system paths

Z into a set of classes of homotopically equivalent system paths. Each such

class has distinct topological properties which indicate a distinct joint strategy

that the agents followed to reach their destinations. To enumerate such classes

of joint strategies but also to characterize topologically the collective behavior

of a system of agents, we develop a model of joint strategies using the concept

of braids [20]. In the following paragraphs, we provide a primer on braids,

establish a correspondence between braids and collective navigation behaviors
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Figure 3.2: A set of 4 particles are initially (z = 0) arranged along the x-axis, on
the points 1, 2, 3 and 4. Through a sequence of rearrangements, the particles
finally (z = 1) reach a final arrangement on the points 2, 3, 1 and 4 respectively.
The pattern of their trajectories is a geometric braid.

and define a topological model of joint navigation strategies.

3.1.2.1 Background on Braids

Braids are topological objects with algebraic and geometric presentations. We

first introduce them as geometrical entities, following a presentation based on

Artin [10] and continue with a discussion of their algebraic presentation and

their group formation.

Denote by x, y, z the cartesian coordinates of a Euclidean space R2
⇥ I . A

braid string is a curve X(z) : I ! R2 that increases monotonically in z, i.e., has
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· · ·

(a) �1

· · ·

(b) �2

· · ·
· · ·

(c) �n�1

Figure 3.3: The generators of the Braid Group Bn.

exactly one point of intersection X(z) = (x, y) with each plane z 2 I . A braid on

n-strings or n-braid (see Figure 3.2) is a set of n strings Xi(z), i 2 N = {1, . . . , n}

for which:

1. Xi(z) 6= Xj(z), for i 6= j 8z 2 R

2. X(0) = (i, 0) and X(1) = (p(i), 0),

where p(i) is the image of an element i 2 N , through a permutation p : N ! N

from the set of permutations of N , Perm(N), defined as:

p =

0

B@
1 2 ... n

p(1) p(2) ... p(n)

1

CA . (3.1)

This geometric representation of a braid is commonly referred to as a geometric

braid. More formally, a geometric braid is often represented with a braid diagram,

a projection of the braid onto the plane R⇥ 0⇥ I (see e.g. Figure 3.3).

The set of all braids on n strings, along with the composition operation, form

a group Bn. The group may be generated from a set of n� 1 elementary braids

�1, �2, . . . , �n�1 (see Figure 3.3), called the generators of Bn, that satisfy the fol-

lowing relations:

�j�k = �k�j, |j � k| > 1, (3.2)
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· · ·

�1

·

· · ·

��12

=

· · ·

�1 · �
�1
2

Figure 3.4: Example of the Composition operation �1 · �
�1
2 for �1, �

�1
2 2 Bn.

�j�k�j = �k�j�k, |j � k| = 1. (3.3)

A generator �i, i 2 {1, 2, ..., n � 1} can be described as the crossing pattern that

emerges upon exchanging the ith string (counted from left to right) with the

(i + 1)th string, such that the initially left string passes over the initially right

one, whereas the inverse element, ��1
i , implements the same string exchange,

with the difference that the left string passes under1 the right (see Figure 3.4).

An identity element, e, is a braid with no string exchanges.

Two braids b1, b2 2 Bn may be composed through the composition operation

(·), which is algebraically denoted as a product b1 · b2. Geometrically, this com-

position results in the pattern that emerges upon attaching the lower endpoints

of b2 to the upper endpoints of b1 and shrinking each braid by a factor of 2, along

the z axis (see Figure 3.3, Figure 3.4). Any braid can be written as a product of

generators and generator inverses. This representation is commonly referred to

as an algebraic braid or a braid word (Fig. 3.4).
1This specific convention is not particularly important, as long as one is consistent. There

are works that use the inverse convention when defining the positive and negative generator
exponents. Our selection facilitates the exposition of further concepts in the remainder of the
chapter.
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Figure 3.5: A space-time representation of a system path in a workspace with
four agents (left) along with its corresponding braid diagram (right) and braid
word (top right), defined with respect to the path’s x-projection. The visual-
ization of the braid diagram and the extraction of the braid word was done
using BraidLab [132].

3.1.2.2 Abstracting Joint Strategies Using Braids

Denote by fx : Qn
! Perm(N) a function that takes as input the system state

Q 2 Q
n and outputs a permutation p 2 Perm(N) corresponding to the arrange-

ment of all agents in order of increasing x-coordinates. As the agents move

towards their destinations, they employ navigation strategies – maneuvers to

avoid collisions. These contribute to a system path ⌅ which corresponds to a

path of permutations ⇡ : [0, T ]! Perm(N) that may be extracted by evaluating

fx throughout the whole path ⌅. This path can be represented by a sequence of

permutations of minimal length ⇡⇤ = (p0, . . . , pK), i.e., pj�1 6= pj, 8j = {1, . . . , K}
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and consecutive waypoints are adjacent transpositions2, i.e., permutations that

differ by exactly one swap of adjacent elements. Due to continuity, a transi-

tion from the (j � 1)th permutation, pj�1, to the jth permutation, pj , implies

the occurrence of an event ⌧j , which may be described as the intersection of the

x-projections of the paths of two agents that were adjacent in the permutation pj�1. The

event ⌧j may be represented as an elementary braid ⌧j 2 �±1
i , i 2 {1, ..., n � 1},

where i corresponds to the index of the leftmost swapping agent in permutation

pj�1. Therefore the whole execution from t = 0 to t = T may be abstracted into

the braid that corresponds to the temporal sequence of events:

⌧ = ⌧1⌧2 . . . ⌧K 2 Bn. (3.4)

This braid word not only constitutes a topological characterization of the system

path (see Figure 3.5 for an example of characterizing a system path as a braid)

but it also represents a topological class of system paths that are homotopy-

equivalent with the system path in consideration. In the remainder of this chap-

ter, we will be referring to the sequence ⌧ as the joint strategy or the entanglement

of the system path. Essentially, we model the space of joint strategies T as the

braid group, i.e., T := Bn.

Remark 1. In our model, a braid constitutes a two-dimensional abstraction of a three-

dimensional pattern of trajectories. Depending on the selection of the projection line,

a different braid emerges. Although a change of projection line only changes the braid

by conjugation [131], in practice, this implies that a set of non-communicating agents

might encode the same joint strategy with a different symbolic representations (braids).

However, this does not affect the convergence to a consensus on a mutually acceptable
2A transposition can be described as a permutation involving exactly one swap of a pair of

elements. An adjacent transposition is a transposition involving an exchange of two adjacent
elements. An adjacent transposition implementing an exchange of the elements with order j
and j + 1, with 1  j < n� 1 in a list of n elements, is commonly denoted as �j =

⇥
j j + 1

⇤
.

72



joint strategy among agents; despite their different representations, they still take ac-

tions that contribute towards the same outcome, as will be shown in our simulation

results. Therefore, the selection of the projection plane for a planning agent is not im-

portant, as long as its action selection process is consistent with it.

3.2 Inference of Collective Behaviors

An individual agent has no sole control over a specific joint strategy. The joint

strategy is an emergent behavior, resulting from the superposition of the indi-

vidual strategies of all agents. In fact, since agents are not explicitly communi-

cating or coordinating, they cannot have a priori knowledge or a precise sense

of the actual joint strategy they are about to follow. However, understanding

the dynamics of collective behavior may allow agents to adopt individual nav-

igation strategies that allow others to infer their intentions more clearly, thus

facilitating everyone’s decision making by reducing uncertainty fast. Judging

from our everyday life experience, we may argue that this is the case with hu-

mans as well. When humans encounter others in a hallway, they do not exactly

know the specific joint strategy they will be following. However, they realize

that their decisions are coupled with the decisions of others and are able to reach

a consensus regarding an avoidance protocol that is comfortable for everyone.

In this section, we present a probabilistic intention inference mechanism that

connects an observed system path with a future system path topology, designed

according to the insights of psychology studies on human action interpretation.

This design is motivated by our goal of employing our framework on an au-

tonomous social robot that will be navigating in a safe and socially competent
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fashion around human pedestrians.

3.2.1 Teleological Reasoning in Multi-Agent Navigation

Csibra and Gergely [32, 33] argued that the mechanisms of human action in-

terpretation are teleological in nature, i.e., humans tend to interpret observed

actions as goal-directed in a given context. Following their insights, we design

an inference mechanism of the form P (⌧|⌅t,Mt), corresponding to a belief over

an emerging joint strategy ⌧ 2 T given a partial system path ⌅t and the state of

the context at time t. The joint strategy represents a collective goal, whereas the

system path plays the role of the action. By context, we refer to publicly available

information, such as a model of the static environment (e.g. a map, obstacles,

points of interest etc) but also information extracted through processing, e.g. by

employing secondary inference mechanisms regarding group formations, iden-

tification of reactive agents etc.

3.2.2 Inferring Joint Strategies from Context

From (3.4), the belief P (⌧|⌅t,Mt) may be expanded as:

P (⌧|⌅t,Mt) = P (⌧1, . . . , ⌧K |⌅t,Mt), (3.5)

which, by applying the chain rule, may be factored as:

P (⌧|⌅t,Mt) =
KY

k=1

P (⌧k|
k�1\

j=1

⌧j,⌅t,Mt). (3.6)

This belief quantifies the likelihood of a sequence of events ⌧1, . . . , ⌧K given ob-

servation of agents’ past behaviors and the context. Essentially, this corresponds
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Figure 3.6: Schematic representation of the inference mechanism from the
perspective of a robot, navigating in a workspace with 3 other agents. From
the perspective of the robot, the system state at time t corresponds to a per-
mutation pt (derived upon projecting on the x-axis of the robot’s body frame),
represented graphically with the color permutation at the bottom (the robot
order in the permutation is denoted with red color). A set of M final permuta-
tions, taking the robot to its destination are considered and a set of 3 compat-
ible joint strategies-braids are planned for each final permutation. The robot
reasons over the set corresponding to the union of all sets of joint strategies
T =

S
T

m, m = {1, . . . ,M}.

to predicting the minimal sequence of permutations ⇡⇤ but also the quality of

the physical transitions between consecutive permutation waypoints (passing

from the right/left hand side).

A joint strategy describes the avoidance protocol that the agents followed

to avoid each other throughout the scene evolution, while navigating from Qs

to Qd. These system path endpoints are not incorporated in the definition of

the strategy as geometric entities but rather as the permutations ps = fx(Qs),

pd = fx(Qd). This design decision reflects the observation that an agent navigat-

ing a multi-agent environment does not need to know the precise intended des-

tinations of others to avoid collisions successfully; they just need to understand
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their passing preferences/intentions. However, the geometric arrangements of

agents’ intended final configurations greatly influence the convergence to a joint

strategy ⌧. In particular, given the initial permutation ps, only a subset T 2 Bn

may lead to pd.

Given the importance of the final permutation in the prediction of a joint

strategy, we may break the problem of predicting a joint strategy into two sep-

arate inference subproblems: (1) a prediction of the final permutation and (2) a

prediction of a compatible system path entanglement – braid word, conditioned

on the predicted final permutation. Following this reasoning, eq. (3.6) may be

rewritten as the following product:

P (⌧|⌅t,Mt) =P (pd, ⌧d|⌅t,Mt) (3.7)

=P (⌧d|pd,⌅t,Mt)P (pd|⌅t,Mt), (3.8)

where ⌧d 2 T represents a braid that is compatible with the prediction of a

final permutation pd, given the permutation pt = fx(Qt) corresponding to the

current system state Qt = ⌅(t). Figure 3.6 depicts a graphic representation of

the structure of our inference mechanism.

3.2.2.1 Inferring the Final Permutation of the System

A planning agent knows with certainty its own destination but has no access

to other agents’ destinations. Although there is no need to make an inference

regarding others’ actual destinations, it is important to infer a final permutation

pd so as to make an informed inference regarding the emerging joint strategy, as

discussed in the previous subsection. Under the assumption of rationality and

given a model of the world, stored in the context Mt, the planning agent may
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infer the general directions of others through a belief:

P (pd|⌅t,Mt) = P (pd(1), . . . , pd(n)|⌅t,Mt), (3.9)

where

pd =

0

B@
1 . . . n

pd(1) . . . pd(n)

1

CA . (3.10)

For simplicity, let us assume that the planning agent’s ID is #1. Then, under the

assumption that all agents are moving towards destinations from the known set

D, the agent’s index under the permutation pd, i.e., pd(1), is constrained. Lever-

aging this, the planning agent may conclude to a subset of feasible permutations

P ⇢ Perm(N), by ruling out any incompatible permutations from Perm(N) as

unlikely. Under the assumption that the cardinality |D| � |N |, multiple assign-

ments of destinations to agents may be possible for each permutation in P .

More formally, for each compatible permutation pdm 2 Perm(N), with m 2

{1, . . .M} and M = (n � 1)!, we may derive a set of possible destination as-

signments �m that are compatible with (1) pdm and (2) the image of agent #1,

through the permutation pdm, i.e., pdm(1), corresponds to a final arrangement of

all agents to destinations of D, with agent #1 at its destination d1. Essentially,

an assignment � 2 �m is an injective function � : N ! D that maps all agents

to a subset of landmarks from D. Upon marginalizing over all possible � 2 �m,

the probability that the final permutation pd = pdm may be derived as:

P (pd = pdm|⌅t,Mt) =
X

�2�m

P (pd = pdm|⌅t,Mt, �)

P (�|⌅t,Mt). (3.11)

By definition, pd = pdm, if we know that agents are going to � and therefore eq.
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(3.11) may be simplified as follows:

P (pd = pdm|⌅t,Mt) =
X

�2�m

P (�|⌅t,Mt). (3.12)

The destination that an agent is aiming for is conditionally independent of the

destinations of others, given ⌅t and Mt, therefore we may express P (�|⌅t,Mt)

as:

P (�|⌅t,Mt) =
nY

j=2

P (qdj = �(j)|⌅t,Mt) (3.13)

where we incorporated the fact that agent #1 is certain about its destination.

Finally, under the assumption of rationality, we follow an approach similar to

Dragan and Srinivasa [40] to model P (qdj = �(j)|⌅t,Mt) as:

P (qdj = �(j)|⌅t,Mt) =
1

Z

exp(�c(⇠j)� c⇤(qsj , �(j)))

exp(�c⇤(qsj , �(j)))
, (3.14)

where ⇠j is the path agent j has followed so far, c measures the length of a path,

c⇤ returns the shortest path between two points and Z represents a normalizer

across the set of landmarks D.

Algorithm 1 outlines the process of scoring all compatible final permuta-

tions from Perm(N). Function Get_Permutation returns a permutation pl of

the set D, corresponding to the arrangement of landmarks in an order of in-

creasing x-coordinates with respect to the agent’s frame. Then, all permutations

are accessed and checked for compatibility with the planning agent’s destina-

tion d (function Check_Perm). In case a permutation is compatible, the set of

possible assignments of agents to destinations that are in compliance with the

permutation, is extracted with function Get_Assignments and then scored

(function Score_Assignments). Otherwise, the corresponding permutation

is assigned a zero score. The scores are finally normalized and returned in the

form of a probability distribution P .
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3.2.2.2 Inferring the Path Entanglement

The second distribution, over system path entanglements P (⌧d|pd,⌅t,Mt) is a

harder distribution to approximate. Especially events that take place further

than one event ahead may be impossible to be traced back to the decisions that

agents have made until time t. For this reason, in this work, we approximate

P (⌧d|pd,⌅t,Mt) as:

P (⌧d|pd,⌅t,Mt) = P (⌧d1, . . . , ⌧
d
K |p

d,⌅t,Mt) (3.15)

⇡
1

�
P (⌧d1|p

d,⌅t,Mt), (3.16)

that is, given the state of execution at time t, as expressed in ⌅t and Mt, the prob-

ability of a braid word is set to be approximately proportional to the probability

of the next generator, observed after time t, being equal to the one prescribed

by ⌧1, where � is an appropriate normalizer. All entanglements that share the

same first generator ⌧1 are assigned the same probability. Finally, in case the

current permutation of agents is equal to the predicted final permutation pd, it

is assumed that the only possible path entanglement is the trivial one, i.e., ⌧ = e,

and the rest are assigned zero probabilities.

To model P (⌧d1|p
d,⌅t,Mt), we first encode a generator ⌧d1 2 {�1, �

�1
1 , . . . , �n�1,

��1
n�1} into a tuple g = (swapg, signg), where swapg 2 {1, . . . , n� 1} contains the

generator’s subscript (corresponding to the pair of agents that are exchanging

sides) and signg 2 {�1 + 1} contains the generator’s superscript (how they are

exchanging sides). This model allows us to decompose the generator prediction

problem into (1) a prediction of the immediately swapping agents and (2) a
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Algorithm 1 Score Permutations(d,⌅, D, perms)
Input: d � agent’s intended destination; ⌅ � state history of all agents; D � list

of landmark locations; perms � list of permutations.
Output: P � prob. distribution over permutations.

1: pl  Get Permutation(D)
2: for i = 1 : n! do
3: compatible Check Perm(perms[i], pl, d)
4: if compatible then
5: � Get Assignments(pl, perms[i])
6: S[i] Score Assignments(�,⌅)
7: else
8: S[i] 0

9: P  S/sum(S)
10: return P

prediction of the type of their swap:

P (⌧d1 = g|pd,⌅t,Mt) =P (swapg, signg|p
d,⌅t,Mt)

=P (signg|swapg, p
d,⌅t,Mt)

P (swapg|p
d,⌅t,Mt).

(3.17)

Regarding the prediction of the next swap, we employ the following model:

P (swapg|p
d,⌅t,Mt) =

1

H

n�1Y

i=1

Rswap(i), (3.18)

where H is a normalizer across swaps and Rswap is defined as:

Rswap(i) =

8
>><

>>:

1
1+exp(�xi�✏) , i = swapg

1
1+exp(�(�xi�✏)) , i 6= swapg

(3.19)

where �xi = xi+1 � xi represents the x-distance between the agents of the pair

i (agents pt(i) and pt(i + 1) in the current permutation pt) and ✏ > 0 is a con-

stant. Smaller distances indicate swaps corresponding to generators that are

exponentially more likely.
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Figure 3.7: Demonstration of the Momentum heuristic for predicting a gen-
erator superscript: The x-projections of the agents’ paths are about to cross,
forming a ��1

1 generator. The z component of their angular momentum is neg-
ative, indicating a tendency for a counterclockwise rotation, which indicates
a negative braid exponent; likewise, in case the z component of the angular
momentum were positive, the emerging exponent would be positive.

Given a prediction of a swapg, the next step is to determine the type of

swapping, i.e., signg. In order to model P (signg|swapg, pd,⌅t,Mt) we employ

a heuristic based on the angular momentum of the system of the agents in con-

sideration, which, assuming unit masses, may be defined as:

~L(swapg) = ~rci ⇥ ~vi + ~rci+1 ⇥ ~vi+1, (3.20)

81



where ~rci , ~rci+1 are respectively the positions of the currently right and left agents,

defined with respect to their current center of mass ~rc = (~rci+~rci+1)/2, whereas ~vi,

~vi+1 are their respective velocities. For two masses moving on the same plane,

the angular momentum is a vector, normal to the plane, along the direction of

rotation. If the masses are about to rotate counterclockwise, with respect to an

axis of reference, the z-component of the momentum, Lz, is positive, and nega-

tive in case the masses are about to rotate clockwise. Based on this observation,

we model P (signg|swapg, pd,⌅t,Mt) as:

P (signg|swapg, p
d,⌅t,Mt) =

8
>><

>>:

1
⇥

1
1+exp(�signgLz(swapg))

, if |~vi|+ |~vi+1| > 0

1
⇥

1
1+exp(�signg�yi)

, otherwise
, (3.21)

where ⇥ is an appropriate normalizer. The more positive Lz is, P (signg =

+1|swapg, pd,⌅t,Mt) gets exponentially closer to 1, whereas in the opposite case,

P (signg = �1|swapg, pd,⌅t,Mt) gets closer to 1. In case the velocities of both

agents are currently zero, the corresponding scores only depend on their dis-

tance along the y-axis, �yi = yi+1 � yi. Figure 3.7 demonstrates schematically

the concept of momentum (for nonzero velocities) and how it is used to predict

signg.

Remark 2. It should be noted that the model of inference presented in this section con-

stitutes is an extended version of the one presented by Mavrogiannis and Knepper [97],

as it may handle a) uncertainty over destinations, b) redundancy of destinations (case

with no unique mapping from a permutation to the set of destinations) and c) incor-

porates a novel heuristic for predicting the exponent of braid generators. However, it

should also be noted that this distribution is a simplified approximation that cannot
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guarantee robust performance and generalization. We are using it to provide a proof

of our concept. Recent work of ours [105] presented a data-driven framework for di-

rectly learning to predict future trajectory topologies from simulated demonstrations of

challenging multi-agent scenarios.

3.3 Decision Making

In multi-agent environments, where there is no explicit communication among

agents, uncertainty regarding everyone’s actions is typically high, which com-

plicates decision making. Humans usually overcome such a complication by

communicating implicitly, mostly through motion. Doing so is made possible

through inference mechanisms that allow them to read the intentions of oth-

ers and select socially compliant actions that reduce uncertainty. This enables

them to reach a consensus over an avoidance protocol that serves everyone and

ensures comfort, while making progress towards their destinations. The super-

position of these considerations represents what – to our interpretation of the

pedestrian bargain [148] – constitutes socially competent behavior in a pedes-

trian context.

To generate socially competent behaviors, we design a cost-based policy.

Our cost function enables an artificial agent to take actions that not only con-

tribute progress towards its destination but also towards a consensus over a

joint strategy that appears to be mutually beneficial for everyone in the scene.

Regarding the first specification, a distance-based efficiency cost is employed,

whereas for the second one, the entropy of the distribution over joint strategies

P (⌧|⌅,M) is used. The distribution allows the planning agent to estimate the
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long-term effects of an action in consideration and how it might influence the

decision making of others. The reduction of the entropy of the distribution may

allow the agent to select an action that reduces the uncertainty for everyone.

In the following subsections, we describe in detail our decision making frame-

work.

3.3.1 Modeling Agents’ Cost Functions

We model the interests of an agent i with a cost function ui : Ai ! R that maps

an action ai 2 Ai to a real number. We design this cost to comprise two terms: (1)

Ei, which represents the agent’s personal Efficiency and (2) Ci, which represents

the state of Consensus over a joint strategy among agents, from the perspective

of agent i, upon taking an action ai 2 Ai:

ui(ai) = �Ei(ai) + (1� �)Ci(ai). (3.22)

We define the personal efficiency term Ei, to be the length of the shortest path

to the agent’s destination, whereas Ci is modeled as the Information Entropy

of the belief distribution over joint strategies P (⌧|⌅,M), from the perspective of

agent i, i.e.,

Ci(ai) = �
X

⌧2T

P (⌧|⌅+,M) log2 P (⌧|⌅+,M), (3.23)

where ⌅+ denotes the system path so far, ⌅, augmented with the action in con-

sideration ai. Finally, � is a weighting factor, expressing the compromise be-

tween efficiency and consensus. Formally, the decision making policy may be

described as a minimization of eq. (3.22):

a⇤i = arg min
ai2Ai

ui(ai). (3.24)
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Note that the cost function ui plays the role of a utility function, with the differ-

ence that lower values are better.

Overall, this policy enables an agent to make decisions that not only con-

tribute progress towards its destination but also towards a mutually beneficial

consensus over a scene outcome. The faster such a consensus is established,

the lower the uncertainty will be for all agents throughout the remainder of

the execution. The Efficiency term represents agents’ intention of reaching their

destinations by spending low energy and is in line with the principle of ratio-

nal action as highlighted in the definitions of the pedestrian bargain [148] and

the teleological reasoning [32]. The Consensus term scores the current state of

the global consensus among agents regarding the joint strategy to be followed

and therefore, it directly incorporates a form of social understanding into the

agent’s decision making policy. The lower the entropy, the lower the uncer-

tainty regarding the emerging joint strategy. Thus, by consistently picking ac-

tions that contribute to entropy reduction, an agent communicates its intention

of complying with a subset of scene outcomes that appear to be preferable by ev-

eryone according to the model P (⌧|⌅,M). As a result, the agents are expected

to reach a consensus over ⌧ easier and faster, avoiding ambiguous situations

such as livelocks or deadlocks and reach their destinations with lower planning

effort.

3.3.2 Planning Joint Strategies

In practice, making use of the distribution P (⌧|⌅,M) requires determining a

set of candidate joint strategies T . The braid group Bn is countably infinite; in
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practice, however, only a subset of joint strategies (braids) are meaningful under

the context of a scene Mt and given observations of agents’ past behaviors ⌅t.

In particular, as discussed in Sec. 3.2, given any compatible final permutation

pdm 2 P , only a subset T m
⇢ Bn may be achievable from the current permutation

pt = fx(Qt). Consequently, there arises the problem of planning a set of joint

strategies T =
S

T
m, m = {1, . . . ,M}, compatible with the set of different final

permutations in consideration from P .

Planning a joint strategy that transitions the system from a permutation cor-

responding to the current state of the system, pt, to a permutation corresponding

to the final state of the system, pdm, may be decomposed into the following sub-

problems: (1) planning a path of permutations, ⇡m = (pt, . . . , pdm) connecting pt

with pdm through a sequence of adjacent transpositions, and (2) assigning com-

patible elementary braids to the transitions between consecutive permutations.

Each transition may be implemented in 2 different ways, i.e., by a compati-

ble generator or its inverse. For example, a path ⇡ of length l⇡ (the number of

transitions required to reach pdi from pt, through ⇡) may be implemented by 2l⇡

different braids.

Assuming that we have concluded to a set P 2 Perm(N) of potential final

permutations, for each one of them pdm 2 P , we plan a set of paths of adja-

cent transpositions, Pm, based on which we generate a batch of joint strate-

gies T
m. These are used to form the final set of joint strategies T =

S
T

m,

m = {1, . . . ,M}.

In this chapter, we convert the problem of planning a topological joint strat-

egy into a search in a graph of permutations. In the following sections, we

describe the construction of the graph and the planning procedure.
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Figure 3.8: A multi-agent scene from the perspective of the planning agent
(blue color). At time t, the agent arranges all agents in the scene in an order of
increasing x-coordinates with respect to the x axis of its body frame {B} and
derives a corresponding permutation pt. Based on observation of all agents’
past trajectories (solid lines) and given knowledge of existing landmarks in
the scene, the blue agent makes a prediction of everyone’s destination (col-
ored pointers) and derives a corresponding final permutation pd. Transition-
ing from pt to pd may be implemented with a joint strategy ⌧ 2 T .

3.3.3 Permutation Graph Search

The set of all permutations on N , Perm(N), along with the composition opera-

tion, form the symmetric group Sn. Sn is a group of order n!, that can be gener-

ated by the set of adjacent transpositions �j =


j j + 1

�
, for 1  j < n� 1.

We make use of the symmetric group to construct a graph G = (V,E), where
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V = Perm(N) and any pair of nodes ⌫a, ⌫b 2 V is only connected iff 9 �ab 2

Sn that permutes ⌫a into ⌫b. The graph G may be represented as a (n � 1)-

dimensional polytope, embedded in a n-dimensional space, which is commonly

referred to as a permutohedron [152]. Fig. 3.9 depicts a permutohedron of order

4, along with example paths and indications of braid transitions.

Planning a path from a permutation pa to a permutation pb, corresponding

respectively to the vertices ⌫a, vb 2 V , is equivalent to finding a path of vertices-

permutations that connect them. Figure 3.8 illustrates the concept of planning

a joint strategy. At planning time t, the agents have already followed trajecto-

ries ⌅t. The planning agent (blue color) has predicted that they are aiming at

reaching the destinations denoted by pointers of corresponding colors. Tran-

sitioning from the current system configuration to the predicted final system

configuration corresponds to transitioning from the current permutation pt to

a permutation pd, both defined with respect to the dashed line, parallel to the

x-axis of the agent’s body frame {B}.

3.3.4 Online Algorithm

In this section, we describe our algorithm design for online navigation planning

that makes use of the components detailed in the previous sections. The algo-

rithm compromises between making progress towards the agent’s destination

and being respectful of everyone’s intentions, as inferred by their past behav-

iors. In case the planning agent does not observe other agents on its way to its

destination, it switches to efficiency optimization.

The SCN algorithm (alg. 2) is our online algorithm for socially competent
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Figure 3.9: A permutatohedron of order 4 for a scene with four agents. Three
alternative paths implementing the transition from the permutation 1234 to
the permutation 3412 are depicted in different colors. Each path consists of
a sequence of transitions, each of which can be implemented topologically
with a braid generator or its inverse.
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navigation. At every replanning cycle, the function Get_Reactive_Agents

first returns a list of agents, R, which the planning agent should be avoiding

collisions with. Then, function Collision_Check generates a set of imple-

mentable, collision-free actions A. If R 6= ?, the algorithm proceeds by plan-

ning a set of joint strategies T (function Get_Strategies) and then picking

the minimizer of (3.22) (function Cost_Optim). In case R = ?, the the func-

tion Efficiency_Optim computes the most efficient action. The algorithm

terminates when the boolean AtGoal becomes true, indicating that the planning

agent has reached its destination.

3.3.4.1 A Discussion of Complexity

The most computationally expensive part of the proposed algorithm is the com-

putation of the set of joint strategies T . Obtaining T involves determining the

set of all compatible final permutations P = {pd1, . . . , p
d
M} that correspond to

final system states with the planning agent at its destination. This set has car-

dinality |P| = M = (n � 1)! and may be computed in time O(n!). For each

permutation pdm, we are computing:

1. A set of K permutation paths ⇧m that connect the current system permu-

tation pt with pdm 2 P . For computing this path set, we employ an algo-

rithm for finding K-shortest paths. Such algorithms typically make use of

a shortest path algorithm, e.g. Dijkstra’s [37]; therefore their complexity

depends on the number of calls to the shortest path algorithm. Katoh’s

algorithm [75] appears to be the most efficient among them, with a run-

time complexity of O(K(|E|+ |V | log |V |)), where |V | and |E| represent the

number of nodes and edges in the graph respectively, which for a permu-
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tohedron of order n are equal to |V | = n! and |E| = n!(n�1). For a constant

K, this computation runs in time O(n!n log n).

2. A set of braids T
m, consistent with each permutation path ⇡m

2 ⇧m. For

each permutation path in ⇧m, we derive 2l different braids (where l is the

number of edges in the path), by taking all possible permutations of con-

sistent generator assignments on the permutation path edges. For a con-

stant K and considering a maximum path length n(n�1)
2 , this computation

runs in time O(2
n(n�1)

2 ) (worst case complexity).

Algorithm 2 SCN(D,Q, d,⌅, At Goal,M )
Input: D � list of landmarks; Q � system state; d � planning agent’s intended

destination; ⌅ � state history of all agents; At Goal � boolean variable sig-
nifying arrival at agent’s destination; M � context.

Output: a � action selected for execution
1: while ¬AtGoal do
2: R Get Reactive Agents(⌅)
3: A Collision Check(⌅,M,R)
4: if R 6= ? then
5: T  Get Strategies(d,Q,D,R)
6: a Cost Optim(A, T , d,⌅,M)
7: else
8: a Efficiency Optim(A, d,M)

9: return a

The dominant term in the expression of the overall worst case complexity

for computing the set of possible braids T
m for one permutation pdm is the ex-

ponential term O(n!). This implies that the complexity of the present algorithm

does not scale well with large numbers of agents. Furthermore, considering that

the aforementioned computation needs to run for all possible permutations in

P , the complexity becomes O((n!)2). However, we argue that for our purposes,

i.e., eventual deployment on a social robot navigating in real world human en-

vironments, the following considerations may enable us to restrict ourselves to

low n and |P| and K:
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(a) A real robot has limited sensing capabilities, usually corresponding to a

local radius of a few meters. Therefore, even in crowded environments,

the surrounding agents will be considered as they enter the sensing radius

and not universally.

(b) The rationality assumption for agents, which is supported by studies on

human inference [33] and human navigation [148]. Rational agents aim at

avoiding undesired divergences from the direction pointing towards their

destinations [109]. This implies that (i) humans end up following short

permutation paths and (ii) a good final permutation prediction can be

done by simply projecting forward agents’ current velocity on the bound-

ary of the robot’s sensing radius (the robot does not need to know exactly

where others are going). These observations motivate low K and low |P|

respectively.

(c) The rationality assumption also allows us to assume that once two agents

pass each other, they stop reacting. For this reason, at replanning time,

we restrict ourselves to considering only the number of agents that are

ahead and are assumed to be observing the planning agent. Therefore,

as the execution progresses and the robot approaches its destination, the

number of reactive agents is expected to drop, allowing the robot to switch

to efficient –and less computationally intense– execution.

(d) Our algorithm is based on frequent replanning. Plans have a short hori-

zon but are made with a global reasoning (over joint strategies). The short

planning horizon has been shown to be in compliance with human loco-

motion according to Carton et al. [24], who presented evidence that hu-

mans employ a shorter planning horizon as they navigate complex envi-

ronments, to avoid collisions that could emerge from unexpected distur-
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bances. The global planning horizon ensures that the motion of the robot

will be consistent throughout the whole sequence of consecutive planning

cycles.

For reference, in a game with 5 agents, a replanning cycle of SCN that gener-

ates 3 permutation paths per permutation runs at an average of ⇠ 185ms, with

the worst case being ⇠ 402ms in a non-optimized MatLab implementation on a

MacBook Pro of 2015 with an Intel Core i7 processor of 2.5 GHz, running macOS

Sierra. These times appear to be encouraging for real-time execution on a mo-

bile robot platform, upon the transfer to a faster language and the appropriate

code optimizations.

3.4 Evaluation

In this section, we present simulation results, demonstrating the benefits of our

approach. Subsection 3.4.1 describes the experimental setup and provides im-

plementation details, whereas subsection 3.4.2 presents results extracted by test-

ing our algorithm under different settings.

3.4.1 Setup

We consider a setup where n agents navigate a discretized square workspace,

partitioned into a set of N2
t tiles, where Nt is the number of tiles per side (Fig-

ure 3.10). Each agent i 2 {1, . . . , n} starts from an initial tile qi and moves to-

wards a final tile di. The game is played in rounds until all agents reach their
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destinations.

In order to assess our approach and demonstrate its benefits, we consider

challenging game scenarios that reinforce intense encounters among agents. We

do so by positioning agents on the sides of the workspace and having them nav-

igate towards opposing sides. Each game scenario is sampled at random from

the space of scenarios of size Nn
t ⇥ Nn

t , corresponding to the number of dis-

tinct assignments of agents to initial and final configurations. At every round,

the players simultaneously pick an action, which corresponds to a neighboring,

unoccupied square. Forward, backward, left, right and diagonal, collision-free

transitions are allowed. Since at planning time each agent has no access to the

plans of others, in order to ensure collision avoidance, transitioning to a square

that is adjacent to a square currently occupied by another agent is not allowed.

Depending on the number of agents and the size of the workspace, this setup

might result in deadlocks. In our evaluation, executions that result in deadlocks

are discarded. However, note that the purpose of our evaluation is to study how

agents behave when they have multiple actions available. We examine how the

adoption of different strategies in action selection may affect the evolution of

the game qualitatively and quantitatively.

Algorithm 3 GREEDY(Q, d,⌅, AtGoal,M )
Input: Q � system state; d � agent’s destination; ⌅ � state history of all agents;

At Goal � boolean variable signifying arrival at agent’s destination; M �

context.
Output: a � action selected for execution

1: while ¬AtGoal do
2: A Collision Check(Q,M)
3: a Efficiency Optim(A,Q, d,M)

4: return a

To demonstrate the importance of incorporating a topological understand-
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ing into agents’ decision making process, we compare the performance of our

algorithm (SCN) against a greedy baseline (see algorithm 3) that plans actions,

greedily seeking to maximize its efficiency (the progress to the agent’s destina-

tion) at every round. The GREEDY algorithm makes use of the same collision

checking function as SCN. Their main difference lies in how they select an ac-

tion when multiple of them are available. Considering a homogeneous setup

(n agents running SCN versus n agents running GREEDY), we show that ex-

plicitly reasoning about the emerging joint strategy at planning time, benefits

everyone in the scene, as it leads to a faster uncertainty decrease that simplifies

everyone’s decision making. Note that despite the different braid convention

that each agent is making, they still manage to converge to a mutually ben-

eficial consensus on a joint strategy of avoidance much faster than GREEDY

agents. Qualitatively, our algorithm leads to less ambiguous system configu-

rations, which result in higher average progress per round and lower average

time to destination.

3.4.2 Simulation Results

In this section, we present the behavior that our algorithm generates and demon-

strate its benefits by comparing its performance with the performance of the

GREEDY baseline.

3.4.2.1 Qualitative Behavior

Figure 3.10 depicts partial executions, after 2 rounds, of a scenario from a game

involving 3 agents. Figure 3.10a depicts the play of agents running SCN, whereas
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(a) SCN: By the end of round 2, the
agents have reached a system configura-
tion corresponding to a clear consensus
over a joint strategy.

(b) GREEDY: By the end of round 2, the
agents have reached a system configura-
tion that is about to lead to conflicting
encounters.

Figure 3.10: A game with 3 agents in a 6 ⇥ 6 workspace. Figure 3.10a and
Figure 3.10b depict partial executions of the same scenario (same start and end
positions for all agents) with SCN and GREEDY respectively. The current
system state is denoted with non-transparent system circles, whereas faded
configurations correspond to configurations of past time steps.

3.10b shows the corresponding play of the agents running GREEDY. It can be

observed that the agents running our algorithm have led the game to a con-

figuration that is more beneficial for everyone, as all of their encounters are

essentially resolved by the end of the second round. This was achieved by plan-

ning informative actions that rapidly led to a significant entropy decrease and

accelerated convergence to a consensus over a joint strategy. On the contrary,

the agents running the baseline, having initialized their game by focusing on

efficiency, are now reacting suboptimally to their constrained action spaces. A

video presentation, demonstrating the concept of our approach as well as our

system in action can be found at https://youtu.be/ge9fRI4eav4.
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3.4.2.2 Performance

Fig. 3.11 depicts comparative performance diagrams, derived upon running

200 randomly sampled game scenarios involving 3 agents navigating a small

workspace of size 6⇥ 6. The quality of agents’ decision making is illustrated in

the profiles of average entropy and average progress to destination, depicted in

Figure 3.11a and Figure 3.11b respectively. It can be observed that the systems

of agents running SCN achieve faster entropy reduction and higher average

progress towards destinations, compared to the systems running the baseline,

with statistical significance noted in the diagrams. Figure 3.13a depicts compar-

ative plots of average time to destination (left) and average time to “get free”,

which corresponds to the time an agent first has full control over the scene evo-

lution, i.e., the first time when no other agents are ahead.

Similar comments can be made for the case of four agents, navigating a

workspace of the same size, 6 ⇥ 6. Figure 3.12 presents comparative perfor-

mance diagrams for entropy and progress to destination, whereas Figure 3.13b

depicts a comparison of average time to destination and average time to get

free.

For the simulated examples presented, each agent models joint strategies as

braids, defined with respect to a projection line that is parallel to its starting side.

For the case of the GREEDY agents, entropy was evaluated by employing the

inference mechanism of the agents running SCN, i.e., we computed what their

belief would be if they had access to the inference mechanism of SCN agents.

To ensure proper comparison, the same set of braids was considered at each

time step for the same agent in both setups. The weighting factor � was set to

0.2, as it was found experimentally to lead to a desired compromise between
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(a) Average timings per agent over 200
scenarios involving 3 agents. On average,
the SCN agents (red color bars) reached
their destination faster and managed to
“get free” faster than the GREEDY agents
(blue color bars).

(b) Average timings per agent over 200
scenarios involving 4 agents. On average,
the SCN agents (red color bars) reached
their destination faster and managed to
“get free” faster than the GREEDY agents
(blue color bars).

Figure 3.13: Average Time to destination and average time to get free, i.e.,
reach a configuration at which no agents are ahead, generated after running
200 experiments involving 3 (Figure 3.13a) and 4 (Figure 3.13b) agents, in a
workspace of size 6⇥6 . Red bars correspond to agents running SCN and blue
bars to agents running GREEDY. The error bars indicate 25-75 percentiles. For
these experiments, the compromise between efficiency and consensus was set
to � = 0.2 and the number of paths per permutation to 3. The ⇤ ⇤ ⇤ symbol
denotes a highly significant timing difference, according to Student’s t-test
(p-value < 0.001).

efficiency and consensus. For deriving multiple candidate paths in the permu-

tation graph, we use the algorithm of Yen [149] for finding K shortest paths.

3.5 Discussion

We considered the problem of decision making in a navigation scenario involv-

ing multiple rational and cooperative agents that do not explicitly communicate

with each other. In such a scenario, the uncertainty over the exact strategies of

other agents make it hard for an agent to predict their behaviors and thus to
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make safe and socially compliant decisions over its own actions. These settings

may be found in a variety of real world application, such as robotic navigation

in crowded human environments.

To address this problem, we presented an online planning framework, in-

spired by the insights of recent studies on the cooperative nature of pedestrian

behavior [148] and the goal-directed inference of humans [33]. Our framework

explicitly incorporates the concept of cooperation by modeling multi-agent col-

lective behaviors as topological global joint strategies, using the formalism of

braids [20]. Our topological model forms the basis of an inference mechanism

that associates observed behaviors with future collective topologies. In the de-

cision making stage, each agent decides on an action that corresponds to a com-

promise between its personal efficiency (progress towards destination) and a

form of joint efficiency (the status of a consensus on a joint strategy of avoid-

ance). To clearly showcase the benefits of our decision making concept, we

deliberately studied a simplified version of the real world problem by consider-

ing an abstract, discrete setup, involving artificial agents playing a cooperative

game. Extensive trials over randomly-generated, challenging scenarios demon-

strated the benefits of reasoning about joint strategies over a baseline that greed-

ily prescribed actions of high efficiency. Our algorithm was shown to lead to a

faster decrease of uncertainty regarding the scene evolution, which resulted in

efficiency increase and lower execution times with high statistical significance.
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CHAPTER 4

SOCIALLY COMPETENT NAVIGATION PLANNING USING A LEARNED

MODEL FOR PREDICTING THE MULTI-AGENT PATH TOPOLOGY

The SCN planner presented in chapter 3 makes use of a probabilistic infer-

ence mechanism that outputs a prediction of the emerging multi-agent trajec-

tory topology that agents are about to follow given observations of their past

trajectories. We constructed an analytical model of this probability distribu-

tion and used it to demonstrate the benefits of reasoning about joint navigation

strategies in navigation scenarios with multiple non-communicating agents in a

discretized workspace.

In this chapter, we extend the capabilities of SCN through the incorporation

of a learned inference mechanism. We derive an approximation of the mech-

anism by training a neural network on synthetic data comprising trajectories,

generated by running randomly generated, simulated multi-agent scenarios.

We present the performance of the network in predicting the multi-agent path

topology and simulation results, extracted by executing a series of challenging

multi-agent scenarios, involving both homogeneous and heterogeneous agents.

Most notably, we show that the placement of 1 SCN agent in a workspace where

multiple other efficiency-driven agents (running the Social Force Model [62])

also navigate towards their destinations results in modifying the behavior of

the latter. Specifically, we observe earlier conflict resolutions, faster consensus

among agents and accelerated uncertainty increase, which we interpret as ben-
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efits resulting from the socially competent behavior of the SCN agent.

4.1 Socially Competent Navigation

According to Wolfinger [148], the social order of human navigation relies on a

high-level protocol, comprising two simple rules: (1) people must behave like com-

petent pedestrians and (2) people must trust copresent others to behave like competent

pedestrians. Although Wolfinger did not explicitly define competence, from the

examples included in his work, we may deduce that he refers to a notion of So-

cial Competence. The concept of Social Competence has been extensively studied

in the field of Psychology from different perspectives and for different scenar-

ios (for an extensive review see [111]). In multi-agent navigation, we may define

social competence as:

The ability of an agent to perceive the context1, analyze it and pick an action

that appears to be compatible with it, according to a pattern of behavior that

the agent assumes observing agents expect from him/her by having observed

and analyzed the context themselves.

According to Csibra and Gergely [33], humans tend to attribute goals to ob-

served actions in a given context. Therefore, socially competent navigation be-

haviors should be indicative of agents’ intentions and compatible with the con-

text. In other words, socially competent agents should be cognizant of the fact

that their behaviors implicitly communicate their intentions to any observing
1By context, we refer to information that is publicly available (e.g. the map), information that

may be directly acquirable through sensing (e.g. agent trajectories) and information that may
be acquired through standard inference processes (e.g. agent groups).
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agents. The importance of implicit communication for human-robot interaction

applications has lately been increasingly appreciated [40, 84, 137].

4.2 Inferring System Path Topologies from Context

Let us denote by Mt the context of the scene at time t 2 [0, 1]. By context, we refer

to information that is either publicly available (e.g. the map of the scene, points

of interest, etc.), or directly acquirable through sensing (e.g. agents’ state his-

tory) or indirectly acquirable through processing (e.g. agents’ current arrange-

ment p 2 Perm(N), inference about agents’ destinations, their corresponding fi-

nal ordering pm, agents’ groupings, etc.) during the time frame [0, t]. Assuming

that by time t 2 [0, 1], a sequence of k events2 ⌧1, . . . , ⌧k have already occurred, a

model of the form P (⌧k+1, . . . , ⌧K |Mt) describes the probability of a future sys-

tem path topology ⌧ = ⌧k+1 . . . ⌧K 2 Bn given the context Mt. For simplicity,

when referring to a prediction over future system path topologies, we will be

using ⌧ to refer to the sequence ⌧k+1 . . . ⌧K .

The actions that agents select at each time step become part of the context,

as they constitute information that may be directly acquirable by all agents

through sensing. Therefore, having an understanding of what collective behav-

iors ⌧ may be compatible with the context Mt, may allow an agent to contribute

to it by executing actions that appear to be in compliance with the emerging col-

lective behavior. In particular, an agent that is considering executing an action

from a set of actions A may be able to understand how each action a 2 A may

reshape the belief of any observers, by simulating this action and computing
2For a definition of events, the reader may refer to chapter 3
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P (⌧|Mt, a). Using the chain rule of probability, this distribution may be factor-

ized as:

P (⌧|Mt, a) =P (⌧k+1, ⌧k+2, . . . , ⌧K |Mt, a) (4.1)

=P (⌧K |Mt, a, ⌧k+1...⌧K�1) (4.2)

. . . P (⌧k+1|Mt, a)

Taking into consideration this distribution at the planning stage may enable an

intelligent agent to make decisions that contribute to the context towards what

appears to be the more likely or appropriate collective behavior, with respect to

the current status of the context, Mt. In our scope, this is what corresponds to

socially competent behavior.

4.3 Learning Collective Navigation Behaviors

Little variations in agents’ decision making and perception mechanisms may

lead to significantly different correlations between the context and the topol-

ogy. Thus, estimating the distribution P (⌧|Mt, a) realistically with a closed-form

model and without introducing over-simplifying assumptions is not a trivial

task. For this reason, we adopt a data-driven approach to extract a model of

the inference mechanism P (⌧|Mt, a) from demonstrations of multi-agent navi-

gation. We do so by training a model of the transition probabilities introduced

in eq. (4.2). To the best of our knowledge, most publicly available pedestrian

datasets either do not contain a sufficiently large volume of sufficiently diverse

behaviors or are not in a format compatible to our setup. To overcome these

complications, we generate a synthetic dataset of system paths, using the Social

Force (SF) model [62]. In the following subsections, we describe the process of
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Figure 4.1: Context and time flow around a planning step.

generating our dataset and detail our learning setup and architecture.

4.3.1 Generating a Dataset of Diverse Collective Behaviors

4.3.1.1 The Social Force Model

At its simplest form, the core of the Social Force model [62] is a dynamic ar-

tificial potential field, constructed by assigning repulsive potentials to agents,

workspace boundaries and obstacles and attractive potentials to points of inter-

est or destinations. Each agent is thus subjected to a resultant force that attracts

it towards its destination and away from other agents, workspace boundaries

or obstacles. Although the Social Force model may produce realistically looking
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pedestrian flows in simulation, it lacks a predictive component, which renders

it as impractical for real-time robotics applications. However, for training pur-

poses, the model enables us to generate a noise-free set of sufficiently diverse

collective behaviors.

4.3.1.2 Experimental Setup

We randomly place a fixed number of agents n on the circumference of a cir-

cular or rectangular workspace. The agents are assigned destinations that en-

force intense encounters (lying in the opposite side of the workspace) and move

towards them by running individual instances of the social force model. The

model parameters, as well as agents’ initial positions and destinations are var-

ied across experiments according to gaussian distributions. Experiments on the

circular workspace loosely simulate pedestrian crossings in free areas such as

atriums or parking lots, whereas experiments on the rectangular workspace re-

semble crossings in hallways. Each experiment is recorded as a waypoint rep-

resentation of the system path with fixed time parametrization dt. The whole

dataset is stored in a 4-dimensional tensor X of size Tmax ⇥ Ndof ⇥ n ⇥ Nexp,

where Tmax is the maximum number of time steps to destination taken by any

agent in the dataset, Ndof is the size of agents’ state (Ndof = 2 as we do not

consider orientation) and Nexp is the total number of experiments.

4.3.2 Learning Setup

We split the acquired dataset into a set of Nx training examples; each example

i is described by a feature tuple hM i
T , a

i
T i, where M i

T is the context at time step
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Figure 4.2: Learning Architecture.

T 2 {1, . . . , Tmax} and aiT is the action that agent i executed at that time step,

both expressed with respect to frame Fi centered at the starting position of agent

i, with y-axis pointing towards its destination. We consider the context M i
T to

be the system path of the time frame (T � Tp, T ], i.e., we make the assumption

that the previous Tp time steps fully capture the context at time T . Similarly, we

consider the action aiT to be the path that agent i followed in the frame (T, T +

Tf ]. Each example is labeled after the braid word ⌧ 2 Bn corresponding to the

projection of the system path in the horizon (T, T + Th] onto the x-axis of frame

Fi. Figure 4.1 demonstrates the time flow around a training example.

4.3.3 Learning Architecture

Using the aforementioned setup, the goal of our learning algorithm is to ex-

tract models of the conditional probabilities of eq. (4.2), i.e., P (⌧1|MT , a), ...,

P (⌧K |MT , a, ⌧1...⌧K�1), so that given an action a 2 A and a system path topology

⌧ of maximum braid length K, we can compute the probability P (⌧|MT , a). Es-

sentially we need to produce the probability of an output sequence (braid word)

given an input sequence (system path). This problem is essentially equivalent
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Dataset XC,2 XC,3 XC,4 XR,2 XR,3 XR,4

Training set 900k 1.6M 2.3M 800k 1.3M 1.8M
Test set 200k 400k 500k 200k 300k 400k

Table 4.1: Generated dataset sizes (number of examples)

to a language translation task. Tasks of this form are effectively handled by se-

quence to sequence neural network models (see e.g. [127]). For this reason, we

employ a sequence to sequence encoder-decoder learning architecture. The in-

put sequence hM i
T , a

i
T i is fed to an encoder Recurrent Neural Network (RNN),

which produces an embedding vector cM i
T that captures the expected future sys-

tem path topology. The embedding vector is then fed to a decoder RNN that

outputs estimates of P (⌧1|M i
t , a

i
T ), P (⌧2|M i

t , a
i
t, ⌧1), . . . , P (⌧K |M i

t , a
i
t, ⌧1, . . . , ⌧K�1).

For the encoder and decoder RNNs we employ the Long Short-Term Mem-

ory (LSTM) architecture [64] due to its effectiveness in capturing long-term

sequence dependencies. A schematic representation of our architecture is de-

picted in Figure 4.2.

4.3.4 Implementation Details and Performance

We trained our models on 6 datasets of 100, 000 experiments each, labeled XC,2,

XC,3, XC,4, XR,2, XR,3, XR,4 where the subscript denotes the number of agents

involved (n = 2, 3, 4) and the type of workspace considered (C for circular, R

for rectangular). From each dataset, we used 80,000 experiments for training

and the rest for validation. As model parameters, we selected: K = 3, Tp = 4,

Tf = 3, Th = 15. Using this parametrization, we split the datasets into training

examples and test examples as shown in table 4.1. The examples were labeled

as braids by using the Braidlab package [132]. As architecture parameters, we
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Dataset ⌧ ⌧1 ⌧2 ⌧3

XC,2 0.93 0.93 1.00 1.00
XR,2 0.99 0.99 1.00 1.00
XC,3 0.71 0.77 0.93 0.98
XR,3 0.78 0.88 0.89 0.97
XC,4 0.45 0.62 0.74 0.88
XR,4 0.56 0.81 0.78 0.81

Table 4.2: Braid prediction accuracies for the whole topology ⌧ and next, second and
third events ⌧1, ⌧2, ⌧3 respectively.

set both the encoder/decoder to use 2 LSTM layers and a hidden/cell state size

of 80. The total number of trainable parameters is 216773. We train using a

Dropout [125] of p = 0.3 after each layer. Our models were trained using the

LSTM implementation of PyTorch [2]. We used the RMSProp [135] algorithm,

considering ↵ = 0.99, a batch size of 10, 000 and an adaptive learning rate sched-

ule, starting from LR = 0.001 and decreasing by a factor of 0.5 if no training loss

improvement was observed after 3 epochs until it reached 0.00001. Every mini-

batch was constructed with a proportional representation from each dataset,

shuffling after every epoch.

The performance of our model in predicting future braid words is presented

in tables 4.2 and 4.3. Specifically, table 4.2 contains the accuracies of our mod-

els in predicting future topologies in total and per event for each per dataset,

whereas table 4.3 contains the accuracies of our models per generator for each

dataset, compared with a Prior baseline (each generator is assigned a probabil-

ity equal to its frequency in the dataset) and Random Guessing (uniform prob-

ability for all generators). The accuracies for later time steps improve, because

when the future topology ⌧ contains less than 3 braid generators, all subsequent

generators are trivially identity elements e i.e. no further crossings occur.
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Dataset e �1 ��1
1 �2 ��1

2 �3 ��1
3

XC,2 0.98 0.64 0.76
XR,2 1.00 0.70 0.78
Prior baseline 0.92 0.05 0.03
Random guessing 0.33 0.33 0.33
XC,3 0.86 0.60 0.70 0.57 0.70
XR,3 0.90 0.87 0.89 0.85 0.87
Prior baseline 0.47 0.13 0.13 0.14 0.12
Random guessing 0.2 0.2 0.2 0.2 0.2
XC,4 0.77 0.51 0.59 0.55 0.61 0.44 0.53
XR,4 0.94 0.78 0.81 0.62 0.78 0.78 0.81
Prior baseline 0.29 0.10 0.12 0.12 0.13 0.13 0.12
Random guessing 0.14 0.14 0.14 0.14 0.14 0.14 0.14

Table 4.3: Per-permutation prediction accuracies for the next braid generator ⌧1,
compared against random guessing and guessing with probability proportional to
the prior distribution (frequency of the generator).

4.4 Socially Competent Motion Generation

Our goal is to enable an autonomous agent to exhibit socially competent behav-

ior in a multi-agent setting. From our perspective, this is equivalent to selecting

actions that (1) are considered as appropriate within the state of the context Mt,

(2) respect the personal space and the motion plans of others and (3) contribute

progress towards the planning agent’s destination.

4.4.1 Decision Making Policy

The decision making policy considered in this work is built on the one presented

in chapter 3 [97, 104]. We encapsulate the specifications for efficiency and social

compliance in a cost function C : A! R, defined as:

C(a) = �E(a) + (1� �)H(a) (4.3)
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where E : A ! R quantifies the Efficiency of an action a 2 A, H : A ! R quan-

tifies the expected state of Consensus among agents over the emerging system

path topology, upon executing the action in consideration, and � is a weight-

ing factor. We model Efficiency as the Euclidean distance between the position

of the agent upon the execution of the action a and its destination. Consen-

sus is modeled as the Information Entropy of the distribution over system path

topologies P (⌧|Mt, a):

H(a) = �
X

⌧2T

P (⌧|Mt, a) logP (⌧|Mt, a). (4.4)

The higher the consensus cost, the more uncertain the evolution of the scene

looks, as, from the definition of the Information Entropy, more outcomes (topolo-

gies) will be more likely.

Thus, apart from making progress towards its destination, a socially com-

petent agent has an incentive to actively reduce the uncertainty, by acting ac-

cording to the context, in a way that reinforces everyones’ belief regarding the

emerging topology of the system path. The decision making policy for the so-

cially competent agent can be formulated as:

a⇤ = argmin
a2A

C(a), (4.5)

where a⇤ 2 A is the action that contributes the maximal decrease of C in a given

context, expressing an optimal compromise between progress to destination

and consensus reinforcement, according to the weighting factor �. Figure 4.3

illustrates an example of reasoning about the future system path topology at

planning time.
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Figure 4.3: The robot is reasoning about different actions leading to qualitatively
distinct scene evolutions (left), corresponding to distinct system path topologies
(right).

4.4.2 Generating a Set of System Path Topologies

In a scene with n agents, infinitely many, arbitrarily complex braids could be

mathematically possible. However not all of them are likely to emerge. For com-

putational and practical reasons, the planning agent concludes to a set T ⇢ Bn

of likely topologies. To do so, similarly to chapter 3, the agent maintains a

permutohedron graph, comprising nodes-permutations and edges-elementary

braids (see Figure 3.9). At planning time, the agent determines the permutation

with respect to the x-axis of its body frame that corresponds to the current sys-

tem state Q and derives the set of all possible future braids words of a given

length.
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4.4.3 Generating a Set of Actions

The planning agent is assumed to have access to a set of actions A, comprising

trajectories of a fixed number of time steps that are executable by its dynamics

(in this paper, we do not incorporate dynamics, assuming that an agent may

move towards any direction). The action set is generated offline by considering

a set of time-parametrized paths. At planning time, the planner rejects the sub-

set of A that is likely to lead to collisions with the environment or other agents.

The actions in the collision-free set Acf are evaluated with respect to the cost C

and the best one is executed. This approach is inspired by the works of Green

and Kelly [55] and Knepper et al. [82], which provide efficient algorithms and a

deeper intuition on path sampling and collision checking.

4.4.4 Online Algorithm

Algorithm 4 presents our algorithm for Socially Competent Navigation (SCN).

The Function UpdateContext incorporates the current system state Q to the

context Mt. Next, the function CollisionChecking checks the action set for

collisions and returns a collision-free subset Acf ✓ A. Subsequently, the func-

tion GetTopologies derives a set of likely topologies T . Then, the function

ScoreTopologies evaluates every topology in T given each action a 2 Acf

and the context Mt by using our learned model P (⌧|Mt, a) and returns a corre-

sponding matrix of probabilities P . Finally, function MinimizeUtilityCost

evaluates all actions in Acf with respect to the utility cost C and returns the

action a⇤ that both contributes the best compromise between progress to des-

tination and communication of compliance with the most likely system path
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topology at the given time. The algorithm runs until the agent reaches its desti-

nation, i.e., until the boolean variable AtGoal becomes 1.

Algorithm 4 SCN(Q,A,Mt, d,map,G,AtGoal, a)
Input: Q � current system state; A � action set; d � agent’s destination region;

map; G � Permutohedron; AtGoal � boolean variable signifying arrival at
agent’s destination; Mt � context

Output: a⇤ � action selected for execution
1: while ¬AtGoal do
2: Mt  UpdateContext(Q,Mt)
3: Acf  CollisionChecking(A,Mt,map)
4: T  GetTopologies(Q,G)
5: P  ScoreTopologies(T ,Acf ,Mt)
6: a⇤  MinimizeUtilityCost(P,Acf , d,Mt)

7: return a⇤

4.5 Evaluation

In our experimental evaluation, we aim to confirm (1) that an agent running

SCN behaves as a socially competent pedestrian, contributing to other agents’

certainty over future topologies and (2) that the presence of a socially competent

agent improves the legibility of other agents’ behavior.

4.5.1 Experimental Setup

We test our planning algorithm in 50 simulated scenarios involving 3 and 4

agents navigating a circular workspace. Each scenario is defined as a tuple

(Qs, Qd), where Qs was defined by placing each agent uniformly at random

on the circumference of the workspace (see Figure 4.4) and Qd corresponds to

points diametrically opposed to Qs. The scenarios were deliberately designed
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Figure 4.4: Swept volumes of 4 agents navigating a circular workspace. The red
agent runs SCN whereas the rest of the agents run a separate instance of the social
force model.

to reinforce intense agent encounters.

For each scenario, we conducted 4 different experiments: (1) experiment

4SF, where all agents are running an individual instance of the social force

model, (2) experiment 1SCNv3SF, where agent #1 is running our SCN algo-

rithm and the other 3 agents are running the social force, (3) experiment 3SF,

where we remove agent 1 and only simulate the remaining 3 agents using the

social force model and (4) experiment 1SCNv3SF-1SCN that is essentially a

playback of 1SCNv3SF with the trajectory of agent 1 (SCN) excluded (treated

as invisible). Note that for the first 5 time steps, the SCN agents switch to SF in

order to collect enough history to bootstrap the learning algorithm

For the evaluation stage, we train a separate evaluation model of the form
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P (⌧|M i
T ) that predicts future topologies ⌧ from the perspective of agent i based

on the context M i
T at time T . Both M i

T and ⌧ are expressed with respect to frame

Fi for agent i (see section 4.3.2). We use exactly the same model architecture and

training procedure as detailed in section 4.3, but with a shorter input sequence

that excludes the action a. This model achieves similar accuracy to P (⌧|MT , a)

(see Table 4.3).

The action set for the agent running SCN comprised a collection of 31 time-

parametrized (dt = 0.2sec, speed 1.2 m/sec) straight line path segments of 3

waypoints each, covering ⇡ rads, whereas the weighting factor � was set to � =

0.6. For reference, the parameters for the agents running instances of SF were

selected as vmax = 1.7m/sec, c = 1, � = 100�, R = 0.2m, � = 0.5m, ⌧a = 0.4s,

V 0
a� = 20m2/sec2, UaB = 10m2/sec2, v0a = 1.6m/sec and we kept the same time

parametrization dt = 0.2sec.

4.5.2 Results

To demonstrate the benefits of the SCN algorithm for multi-agent navigation

scenarios, we measure its effects in the behavior of other agents. More specifi-

cally, in each setup, we record (a) the time to destination (Figure 4.5) and (b) the

evolution of the entropy of the distribution P (⌧|M i
T ) (Figure 4.6), both averaged

over the same three SF agents (agents #2, #3, #4) per experiment.

Figure 4.5 shows that the 1SCNv3SF setup (Figure 4.4 depicts an example

execution) achieved the fastest average time to destination, as a result of SCN’s

consistently competent behavior. Student’s t-test yields a p-value < 0.001 indi-

cating a highly significant improvement, compared to 4SF and 3SF (Figure 4.5).
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Figure 4.5: Average time to destination per experiment per agent (excluding agent
#1). The error bars indicate 25th and 75th percentiles over 50 experiments. 1SCNv3SF
is shown to terminate faster than both 4SF and 3SF, (according to a Student’s t-test
with p-value < 0.001).

Note that the time to destination for the SCN agent itself was excluded from this

test, indicating that the three SF agents become more efficient thanks to the presence

of one SCN agent.

In Figure 4.6, at time zero, we see that the entropy of a uniform distribution

in B4 (the braid group with n = 4 strands) is naturally higher than the ones

in B3 simply because of the higher baseline penalty for the probability mass

being spread over more discrete possibilities. As we noted earlier, during the

first five time steps, SCN agents in 1SCNv3SF run SF in order to collect enough

data (grey box in Figure 4.6). Henceforth, they switch to SCN, which results in
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Figure 4.6: Entropy profiles averaged across experiments and agents (excluding
agent #1). The black circles indicate timesteps where the entropy measured for
1SCNv3SF is lower than for 3SF with statistical significance (Student’s t-test, with
p-value 0.022). The gray area in the plot corresponds to the first time frame Tp, dur-
ing which the agent running SCN was moving efficiently and observing the context.

a precipitous drop of the average entropy that continues until it drops below

both baselines. In particular, in the time frame [25, 31] the entropy in 1SCNv3SF

drops significantly below the entropy of 3SF, according to a Student’s t-test,

with p-value  0.022.

One could object that the SCN agent is an integral part of the braid, and

it is therefore unsurprising that a socially competent agent reduces the system

entropy. To measure the effect on the entropy of the other three agents alone,

we introduce one additional baseline, 1SCNv3SF-1SCN. This result shows the
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entropy of the system path for the three SF agents after removing the SCN agent.

This result shows that the reduced entropy is not due to the direct contribution

of SCN alone. Rather, the three SF agents are themselves behaving in a more

orderly fashion in the presence of the SCN agent. This result suggests that in

acting in a socially-competent manner, SCN increases the social competence of SF

agents as well. For clarity, note that the graph in Figure 4.6 terminates before all

of the agents have had an opportunity to quiesce at their goals. At that point, all

entropies converge to zero. However, the benefit of social competence in terms

of reduced time and confusion is achieved long before.

4.6 Discussion

We presented a planning framework for navigation in crowded environments.

The foundation of our approach is a topological representation of the collective

behavior of a set of agents, based on braids [20]. This representation forms the

basis for the design of an inference mechanism that predicts the topology of the

future trajectories of a set of agents, given the context of a scene. A model of this

mechanism was extracted in a data-driven fashion by employing a deep neural

network architecture on synthetic data generated through the use of the Social

Force model [62]. The inference mechanism serves as a means of understand-

ing how the agent’s behaviors might affect the observing others. This enables it

to select behaviors that are socially competent, i.e., constitute the best response to

the context. We conducted a set of simulated experiments that provided us with

statistically significant evidence suggesting that our framework results in col-

lective behaviors that simplify the planning problem for everyone in the scene.

This is reflected in the behavior of other agents: systems of agents containing
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an agent running our algorithm achieved significantly reduced average time to

destination and were able to get a clear topological understanding of the scene

evolution significantly faster, as shown in the average entropy profiles of the

agents not running our model. Future work involves learning a model of system

path topology prediction from human pedestrian data, experimental evaluation

on a social robot platform and a study to assess its interactions with humans.
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Part III

Planning by Reasoning about

Pairwise Collision Avoidance

Intentions
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CHAPTER 5

SOCIAL MOMENTUM: A FRAMEWORK FOR LEGIBLE NAVIGATION IN

DYNAMIC MULTI-AGENT ENVIRONMENTS

The topological model introduced in Chapter 3 provides a navigation plan-

ner with significant expressive power, as the robot may enumerate, consider

and anticipate any possible multi-agent navigation strategy. The high compu-

tational cost associated with considering large sets of outcomes highlights the

need for a practical strategy of pruning. Chapters 3 and 4, introduced two dif-

ferent alternatives for pruning the infinite set of outcomes in consideration: one

that makes use a short-horizon lookahead, and one that makes use of a learned

inference mechanism, respectively. However, these methods still lack of ways to

incorporate long-term intentions into robot actions but also to generalize across

different domains.

In this chapter, we present a motion planner that makes use of an additional,

physics-inspired way of pruning. Instead of considering a large set of possi-

ble multi-agent navigation outcomes, this new planner directly determines the

most likely flow of the system and acts in a way that clearly communicates the

robot’s compliance with it. More specifically, our framework estimates the most

likely intended avoidance protocols of others based on their past behaviors, su-

perimposes them, and generates an expressive and socially compliant robot ac-

tion that reinforces the expectations of others regarding these avoidance pro-

tocols (see Figure 5.1 for a graphic illustration of the main concept underlying

our approach). This action facilitates inference and decision making for every-

one, as illustrated in the simplified topological pattern of agents’ trajectories.

Extensive simulations demonstrate that our framework consistently achieves
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Figure 5.1: A human and a robot move towards opposing sides of a hallway.
The initial configurations of the two agents make it hard for the human to
predict the emerging avoidance strategy (“right” or “left”). The robot detects
a slight advantage towards the “right” strategy and acts towards amplifying
it and thus facilitating the inference of the human regarding the emerging
(right) strategy of avoidance.

significantly lower topological complexity, compared against common bench-

mark approaches in multi-agent collision avoidance. The significance of this

result for real world applications is demonstrated by a user study that reveals

statistical evidence suggesting that multi-agent trajectories of lower topological

complexity tend to facilitate inference for observers.

More specifically, we contribute: (1) a novel topological consideration of leg-
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ibility that captures the complexity of multi-agent dynamics; (2) a novel infer-

ence mechanism that reduces the trajectory prediction problem (continuous, in-

finite number of possible solutions) to the easier problem of topology prediction

(discrete, bounded number of candidate solutions); (3) a cost-based planner, in-

spired by the cooperative nature of human navigation [148] and motivated by

the goal-driven nature of human inference [33], that generates motion towards

simplifying inference and planning for observers; (4) the introduction of a tool

from low-dimensional topology for assessing the complexity of multi-agent tra-

jectories and multi-agent motion planning; (5) extensive simulations demon-

strating the topological and geometrical efficiency of our planner, compared

against benchmarks in the area of multi-agent collision avoidance; (6) statistical

evidence extracted from an online user study with human participants, demon-

strating that executions of greater topological efficiency tend to be more legible,

i.e., allow early and correct inference of agents’ behaviors.

This work constitutes a new step in our investigations of the use of topolog-

ical methods and tools for modeling multi-agent interactions in navigation and

planning socially competent robot behaviors in multi-agent domains. Our past

works made explicit use of topological braids to plan socially competent robot

behaviors [97, 105]. This work makes use of topological braids as an analytical

tool for assessing the quality of multi-agent planning.

5.1 Multi-Agent Trajectory Analysis

In a scene where multiple agents navigate towards their destinations while

avoiding collisions with each other, their decision making over time may be

represented as a geometrical pattern, formed by the spatiotemporal superposi-
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tion of their trajectories. The topological properties of this pattern are indicative

of the interactions that the agents have with each other throughout the course

of the scene. In particular, the way agents avoid one another, by passing on the

left, right, front or back of others results in an “entanglement” of their trajecto-

ries over time. Depending on the navigation strategies that agents follow, the

complexity of this entanglement may range.

We hypothesize that the complexity of the entanglement of the trajectories

of multiple agents that navigate simultaneously a workspace is related to

the planning effort they spend.

In particular, we aim to show that legible behaviors in multi-agent navigation

result in trajectory entanglements of low complexity. This will allow us to em-

ploy as a measure of topological complexity as a proxy for assessing the legi-

bility of multi-agent behaviors. Based on the work of Carton et al. [25], who

showed that legible behaviors in navigation reduce the required planning ef-

fort of navigating agents, we aim to show that trajectories of low topological

complexity require low planning effort for agents.

In the following subsections, we present a tool for evaluating the topological

complexity of multi-agent trajectories. This tool makes use of the representation

of multi-agent navigation behaviors as topological braids, introduced in chap-

ter 3.
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5.1.1 Complexity of Braids

We are interested in quantifying the topological complexity of a multi-agent tra-

jectory ⌅. Assuming that such a trajectory may be abstracted into a braid word

⌧, with the method discussed in the previous subsection, an intuitive measure

of complexity for ⌅ would be the braid word length l(⌧), defined as the number

of generators that form it. In general, topologically complex braids correspond

to braid words of larger length and equivalently, longer words indicate a higher

topological complexity (see Figure 3.5 for intuition on the relationship between

braid length and topological complexity). However, the amount of entanglement

induced by distinct braids of same length may vary. For example, consider the

braids b1 and b2 shown in Figure 5.2. Although l(b1) = l(b2), it may be observed

qualitatively that the entanglement of b2 is more intense (or less trivial) than that

of b1, due to the action of its third strand. This observation is an intuitive indi-

cation that the braid word length cannot be used unambiguously as a universal

complexity index.

To overcome this degeneracy, Dynnikov and Wiest [42] introduce the braid

Complexity Index. This index quantifies the amount of entanglement induced on

a canonical curve diagram (Figure 5.3a) upon its application on it. An n-braid

b 2 Bn may be applied on a canonical n-curve diagram by sequentially enforcing

the braid’s topological pattern on the diagram’s fields (e.g. Figure 5.3b, Fig-

ure 5.3c, Figure 5.3d). Intuitively, the canonical curve diagram can be thought

of as a heterogeneous mixture, comprising n clearly separated substances. The

application of a braid b can be thought of as the enforcement to the substances

of a mixing pattern that follows the entanglement described by the braid b. In

other words, the strings of the braid are matched to the substances of the curve
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(a) b1 = ��1
2 ��1

1 (b) b2 = �2�
�1
1

Figure 5.2: Two braids of the same length, b1 = ��1
2 �1 and b2 = ��1

2 ��1
1 2 B3,

with different entanglements. Qualitatively, it may be observed that b2 is
more complex than b1. Figure 5.3 formalizes the complexity measurement,
using the Topological Complexity Index, defined on curve diagrams.

diagram; as the braid progresses along the z-axis, the substances move with it,

resulting in a new curve diagram. In the following subsections, we formally

define curve diagrams and the braid Complexity Index [42].

5.1.1.1 Curve Diagrams

Denote by D2 the closed unit disk, centered at the origin of the complex plane

C and let Pn be a set of n points, uniformly distributed along the intersection of

the real axis with the disk, R \ D2. The set of points in Pn are called punctures,

whereas the set Dn = D2
\Pn, i.e., the region of the unit disk upon the removal

of the punctures is called punctured disk. Finally, denote by E the union of n� 1

disjoint arcs on Dn, separating all the punctures, as shown in Figure 5.3a. A

curve diagram of a braid � 2 Bn is the image D = � · E of E under the homeo-

morphism corresponding to �. The image D is the union of arcs obtained from

128



E through the action of �. This is only defined up to isotopies fixing @D2 and

Pn.

5.1.1.2 The Complexity Index

The norm of a curve diagram D is defined as the number of intersections of D

with the real axis and denoted as:

||D|| = #(D \ R). (5.1)

The Complexity Index of a braid � 2 Bn is then defined through the use of its

corresponding curve diagram D = � · E, as:

c(�) = log2(||� · E||)� log2(||E||). (5.2)

This expression is equal to the logarithm of the gain of intersections with the

x-axis, upon the application of a braid. Looking at Figure 5.3, it may be verified

that the higher the number of intersections with the real axis, the higher the

intensity the entanglement of the corresponding braid.

5.1.2 Complexity of Multi-Agent Planning

The Complexity Index quantifies the amount of entanglement that a braid induces

to the canonical curve diagram. In this work, we employ braids as a represen-

tation of the topological pattern that a collection of trajectories forms. Thus, the

Complexity Index may be used as a measure of the complexity of the braid cor-

responding to a specific execution of a multi-agent scenario. More importantly,

it may serve as a characterization of the complexity of the solution to the mo-
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tion planning problem of transitioning safely from Qs to Qd that the navigating

agents converged to, without explicitly communicating with each other.

The setup of our problem is quite simple: agents move between two rest-

ing positions (from start to goal). However, the lack of explicit communication

among them may result in complicated collision avoidance maneuvers, yield-

ing undesired oscillatory behaviors but also potentially undesirably long and

entangled paths for one or more agents. The former problem, commonly re-

ferred to as the “reciprocal dance” problem [47], has been widely addressed in

the literature (see e.g. Trautman et al. [138]). The latter problem though, to the

best of our knowledge, has not been modeled or approached appropriately. In

this work, we address it by (1) using the Complexity Index as a proxy to quantify

the complexity of multi-agent planning, (2) proposing a planning framework

that explicitly incorporates this understanding into the decision making stage,

towards generating legible behaviors that reinforce plans of low trajectory en-

tanglement and (3) investigating the effect of trajectory entanglement to human

inference through a user study.

5.2 The Social Momentum Planning Framework

In this section, we present a planner that enables agents to contribute to trajec-

tory patterns of low topological entanglement, as they navigate towards their

destination. Our planner is based on a cost function that detects the intentions

of other agents over pairwise collision avoidance protocols (e.g. right or left)

and favors actions that are in compliance with them. The cost function, named

the Social Momentum cost, is defined as the weighted sum of the magnitudes of
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the pairwise angular momenta between the planning agent and all others. The

optimization of the Social Momentum cost results in motion that tends to rein-

force the current momenta by locally maximizing their magnitudes along their

current directions, which corresponds to reinforcement of the currently estab-

lished pairwise collision avoidance protocols between the planning agent and

others. Our Social Momentum (SM) planning algorithm compromises between

the Social Momentum cost and an Efficiency cost that drives the planning agent

towards its destination. Throughout consecutive time steps, this policy results

in a behavior that appears to be consistently compliant with the agent’s past

behavior and with the preferences of others over avoidance strategies. Effective

communication of the agents’ intended avoidance strategies results in behaviors

that are easy to read and thus enable agents to implicitly cooperate efficiently to

avoid each other, which leads to avoiding redundant trajectory entanglement.

5.2.1 Angular Momentum for Collision Avoidance

Consider two agents A and B moving towards opposing sides of a hallway, as

shown in Figure 5.1. The geometry of the shared space renders agents’ decisions

coupled. In order to reach their destinations in a collision-free and socially ac-

ceptable fashion, they need to (1) agree on a passing side (right or left) and (2)

respect the personal space [58] of each other by maintaining a comfortable min-

imum distance. To quantify how well the agents are doing with respect to both

of these specifications, we construct an analogy with the physical quantity of

Angular Momentum. Assuming unit masses for the two agents, the angular

momentum of their system with respect to its center of mass C, may be defined
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as:

LAB = rCA ⇥ vA + rCB ⇥ vB (5.3)

where

rCA = qA � rC , rCB = qB � rC (5.4)

are agents’ positions, defined with respect to their center of mass

rC = (qA + qB) /2. (5.5)

For a system of agents navigating on the horizontal plane, the angular momen-

tum is a vector perpendicular to the workspace, pointing along the positive

direction of the z-axis for counterclockwise agent rotations and along the nega-

tive direction of the z-axis for clockwise rotations, thus encoding the right and

left passings respectively. Its magnitude depends on the distance between the

agents and also on the angle of their velocities, with larger distances and an-

tiparallel velocities scoring higher. As a result, the angular momentum may be

used (1) as a tool to monitor an emerging avoidance protocol (right/left pass-

ing) but also (2) as a tool to generate easily interpretable avoidance maneuvers

in compliance with the preferences of the other agent and in consistency with

previous behaviors of the agents.

5.2.2 Social Momentum for Legible Collision Avoidance

In a crowded multi-agent workspace, an agent interacts with multiple others at

the same time, in the sense that every action taken broadcasts signals of inten-

tions or preferences over avoidance strategies. Our framework enables an agent
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Figure 5.4: Social Momentum: The planning agent (red color) is moving to-
wards the red target X, while complying with its pairwise momenta with all
other agents.

to read these preferences, associate them with its own, and act competently to-

wards simplifying everyone’s decision making. To this end, we introduce a

novel index, comprising a weighted sum of the magnitudes of all pairwise mo-

menta between the planning agent and the set of all other agents Ni = N\{i}.

Higher values indicate a higher certainty over the emerging pairwise avoidance

protocols between the agent and all others. We call this cost the Social Momen-
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tum cost and formally define it for agent i as a real function L : A! R over the

agent’s action space A, as follows:

L(a) =

8
>><

>>:

X

j2Ni

wj||L̂
ij(a)||, if sign

⇣
(Lij)T L̂ij(a)

⌘
> 0, 8j 2 Ni

0, otherwise

(5.6)

where L̂ij(a) denotes the expected pairwise momentum between agents i and

j, upon agent i taking an action in consideration, a 2 A and agent j moving

with its current velocity, Lij is their current momentum and wj 2 R is a weight,

computed as the inverse of the distance between agents i and j. The quan-

tity sign
⇣
(Lij)T L̂ij(a)

⌘
indicates whether the expected evolution of the pairwise

momentum between agents i and j is in compliance with their current momen-

tum Lij . A positive sign corresponds to an action that preserves the current

momentum sign and thus the currently preferred pairwise avoidance protocol.

A negative sign indicates inversion of the established pairwise avoidance pro-

tocol, which is undesired. For this reason, an action that results to inversion of

a pairwise momentum is assigned a score of zero. Note that the only non-zero

components of all pairwise momenta are their z-components, since we assume

that the workspace is a horizontal plane.

Algorithm 5 SM(Q,A, d,map,AtGoal, a)
Input: Q � current system state; A � action set; d � agent’s destination region;

map; AtGoal � boolean variable signifying arrival at agent’s destination
Output: a � action selected for execution

1: while ¬AtGoal do
2: Acf  Collision Checking(R, Q,A,map)
3: R Get Reactive Agents(Q)
4: if R 6= ? then
5: a Get Legible Action(Q,Acf ,�, d)
6: else
7: a! Get Efficient Action(Acf , d)

8: return a

135



5.2.3 Decision Making

In this section, we present the Social Momentum (SM) algorithm, a cost-based

planning algorithm, built around the Social Momentum heuristic. The algorithm

is based on frequent replanning; at every planning cycle, it picks an action that

corresponds to the optimal compromise between progress to agent’s destination

and legible avoidance of others. We formalize this decision making strategy into

the following optimization scheme:

a⇤ = argmax
a2A

{�E(a) + (1� �)L(a)}, (5.7)

where � 2 R is a parameter accounting for proper scaling and weighting of the

two quantities. We model the progress function E : A ! R to be the inverse of

the length of the unobstructed line to destination. The action space A comprises

a pre-sampled set of actions of finite duration that are executable by the agent.

Algorithm 5 describes the SM algorithm in pseudocode format. At each re-

planning cycle, the function Collision_Checking checks for collisions with

other agents or bounds and returns a set Acf ✓ A of collision-free actions. Then

function Get_Reactive determines the subset of agents R to which the plan-

ning agent should be reacting: only agents that lie in front of the planning agent

are considered (see Figure 5.4). In case R 6= ?, the planning agent determines a

legible action a by compromising between Progress to destination and Social Mo-

mentum (function Get_Legible_Action); otherwise, the algorithm switches

to progress maximization mode (function Get_Efficient_Action). Termi-

nation occurs once the algorithm reaches a desired distance to destination.

136



5.3 Evaluation

In this section, we evaluate our approach by investigating the following two

hypotheses:

1. “The Social Momentum Framework produces multi-agent trajectories of

significantly simpler topological entanglement than existing approaches

of multi-agent planning”.

2. “In multi-agent domains, multi-agent trajectories of simple topological en-

tanglement are more legible”.

Confirmation of these two hypotheses provides evidence that the Social Mo-

mentum framework results in legible navigation in multi-agent environments.

To test hypothesis (1), we perform an extensive simulated evaluation. To test hy-

pothesis (2), we conduct a study in which we ask users to predict the evolution

of simulated multi-agent scenarios from partial observation.

5.3.1 Simulations

We evaluate our planner in simulation by comparing against common bench-

marks in multi-agent planning. Specifically, we consider the Social Force (SF)

model [62] and the Optimal Reciprocal Collision Avoidance (ORCA) framework

[142]. It should be noted that these frameworks were designed to produce fast

and realistic simulations of multi-agent navigation scenarios and not to pro-

duce legible behaviors. However, they still constitute relevant baselines due to

(a) their wide dissemination and existence of ready implementations, (b) their
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proven performance in various types of scenarios, (c) the fact that they consti-

tute common benchmarks and thus common works of reference, (d) their ability

to handle any number of agents.

5.3.1.1 Experimental Setup

We consider multi-agent scenarios involving sets of homogeneous agents nav-

igating a circular workspace. Each scenario is generated as follows: (1) the

workspace circumference is partitioned to n arcs of equal length, (2) each arc

is assigned to an agent, (3) the agent is placed at a random, collision-free posi-

tion on the arc assigned to it and (4) each agent is assigned a destination that is

antipodal to its starting location and lies on the workspace circumference. The

workspace considered is a circle with a diameter of 5m, whereas the agents were

discs of diameter 0.6m. This setup was specifically selected as it reinforces the

emergence of challenging agent encounters. The occurrence of such scenarios

highlights the value of intent-expressiveness as a feature that reduces uncer-

tainty by reinforcing implicit coordination. We consider 4 different classes of

scenarios, each corresponding to a different number of agents, ranging from 3

to 6. For each class, we generate 200 intense multi-agent scenarios at random

and execute them with each of the planners considered. Note that each of the

planners considered can be tuned to yield qualitatively different behaviors. In

order to ensure a fair comparison, we assumed similar tunings with respect to

sensitivity to obstacles and kept them constant across all trials.
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5.3.1.2 Quality Measures

To evaluate the quality of an execution, we consider two different criteria: (1)

the braid Complexity Index, which serves as a measure of the topological effi-

ciency of the execution and (2) the Path Irregularity index [57], defined as the

total amount of unnecessary rotation (divergence of agent’s heading from its di-

rection to its destination) per unit path length, averaged per agent, which serves

as a measure of the geometrical efficiency of the execution. Complexity Index

computations were implemented using the BraidLab package [132], assuming a

projection onto the global x-t coordinate plane.

In the evaluation of the topological entanglement, we also include a theo-

retical Lower Bound baseline, which returns a topological path of minimal topo-

logical entanglement that executes the scenario in consideration. This baseline

may be described as follows: (1) find the minimal path of transpositions, ⇡⇤

that connects the initial permutation of the system, ps = fx(Qs), with the final

permutation of the system, pd = fx(Qd) and (2) derive a sequence of generator

transitions for all consecutive waypoints in ⇡⇤, i.e., a braid �⇤
2 Bn that yields

the lowest Complexity Index c(�⇤) for the scenario. This baseline can be thought

of as an ideal case of perfect communication and compliance (or centralized

planning).

5.3.1.3 Performance Comparison

Figure 5.5 depicts the average Complexity Index for each planner and class of sce-

narios considered. The Complexity Index of SF and ORCA appears to be consis-

tently rising with the number of agents. In contrast, SM exhibits a slower rise;
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Figure 5.5: Average Complexity Index of trajectories generated by executing
200 scenarios with 3, 4, 5 and 6 agents with the Social Momentum (SM), So-

cial Force (SF) and Optimal Reciprocal Collision Avoidance (ORCA) models.
A theoretical lower bound baseline is also included for reference. Datapoints
marked black correspond to significantly lower average Complexity of SM
than both SF and ORCA, whereas the datapoint marked green indicates sig-
nificantly lower average Complexity of SM than SF, according to paired Stu-
dent’s T-test. Test statistics can be found at table 5.1.

the transitions between 3 and 4 agents and between 5 and 6 agents are done

with almost constant complexity, with the only rise taking place in the transi-

tion between 3 and 4 agents. Overall, SM achieves consistently lower topolog-

ical entanglement with statistical significance, except from the case of 3 agents,

where the scenarios are not geometrically challenging to yield significantly di-

verse behaviors. Detailed statistics of paired t-tests conducted for the SM-SF

and SM-ORCA pairs are reported in table 5.1. Despite this result, the theoretical
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Figure 5.6: Average Path Irregularity per agent extracted by executing 200 sce-
narios with 3, 4, 5 and 6 agents. Datapoints marked black denote different
irregularity of SM than both SF and ORCA, whereas the datapoint marked
green indicates lower irregularity of SM than SF, according to paired Stu-
dent’s T-tests. Test statistics can be found at table 5.1.

Lower Bound consistently outperforms all planners, providing an illustrative

demonstration of their suboptimality in terms of topological efficiency which re-

flects the price of no explicit communication in multi-agent planning. Note that

the constant Complexity Index value of 1.5850 that the Lower Bound achieves

is an artifact of the symmetry of the considered scenarios (agents traveling to

antipodal points in the workspace).

Figure 5.6 depicts the average Path Irregularity per agent, for each planner

and class of scenarios considered. Although for all planners the path irregu-

larity rises with the number of agents, each planner performs differently. The
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t-Tests Complexity Index Path Irregularity
Agents Pair t-value p-value t-value p-value

3 SM-SF -2.497 0.013 -26.397 < 0.001
SM-ORCA -0.593 0.553 9.197 < 0.001

4 SM-SF -7.963 < 0.001 -34.514 < 0.001
SM-ORCA -5.740 < 0.001 17.336 < 0.001

5 SM-SF -9.424 < 0.001 -41.400 < 0.001
SM-ORCA -5.395 < 0.001 7.934 < 0.001

6 SM-SF -11.561 < 0.001 -51.430 < 0.001
SM-ORCA -5.250 < 0.001 0.152 0.879

Table 5.1: Statistics of paired t-tests between SM and SF, ORCA for different
agent numbers. We considered N � 1 degrees of freedom, where N = 200 is
the number of scenarios per class.

different performance of each planner is indicative of the distinct philosophy

with which they have been designed. SF, lacking predictive mechanisms yields

significantly more irregular paths than SM and ORCA. ORCA achieves consis-

tently the lowest path irregularity, as a result of its geometrically optimal be-

havior, which in practice results in minimal divergence from the unobstructed

line connecting an agent with its destination at any time. SM performs slightly

worse ORCA, as a result of its different consideration of collision avoidance as

a rotation; SM agents diverge from their shortest paths more often to convey

intent. For the case of 6 agents the geometric complexity of the scenarios is too

intense even for ORCA which performs almost equally to SM.

5.3.2 User Study

We conducted a user study, in which we asked users to watch a series of videos

(shown from a top view) of simulated executions of scenarios involving 5 agents

navigating a circular workspace. For each video, users were asked to predict
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Score: 6 points

You answered in 1.818
seconds! That’s faster
than the median time!

ü Correct!

+2 points!

Figure 5.7: Study interface: A video of a scenario execution is shown and
users predict how the red agent is going to avoid the blue agent by press-
ing the corresponding button at the bottom. The display of user’s score and
performance statistics aim to to incentivize fast and accurate responses.

the way two agents were going to avoid each other (right or left side). Speed

and correctness (the basis of the legibility definition) were incentivized through

a scoring system that awarded points for quick and accurate answers and de-

ducted points for wrong or slow responses (Figure 5.7 depicts the study inter-

face). The study used a total of 15 videos, with duration ranging from 6.3 to 15.7

seconds, corresponding to scenarios of Complexity Index uniformly ranging from

1.585 to 4.250. More than 180 users, recruited from the social media platforms

of Reddit and Facebook, contributed a total of 2704 video views and clicks. An

analysis of the collected dataset is presented in Figure 5.8.
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The blue trend shows the relation between the Complexity Index and the me-

dian time of correctly predicting the side on which one agent will pass another.

We fit a linear model to the data using iteratively reweighted least squares,

shown in Figure 5.8 as a blue line with a 95% confidence interval. The effect

of the Complexity Index on click time is positive, with a slope of 0.0236, and sig-

nificant (Student’s t-test, t = 5.60, p < 0.001). In other words, as the topological

entanglement intensifies, users take more time to accurately predict the side of

passing, i.e., more complex scenarios are less legible. We verified that the rate

of incorrect answers for a video is not correlated with the Complexity Index of

that video via computation of a Pearson correlation coefficient (r2 = 0.1017,

p = 0.7185).

The green trend shows the relation between the Complexity Index and the

time of passing between the two agents. We fit a linear model to the data, shown

as the green line with a 95% confidence interval. The trend is positive (slope of

0.0833) and nearly significant (t = 1.93, p = 0.0538). Increased Complexity Index

correlates positively with increased time of passing, and thus with longer, less

efficient interactions. For each video, most users were able to correctly predict

the passing side before the passing occurred. We see a trend towards predicting

the passing with greater lead times for greater Complexity Index. However, we

argue that the measure of legibility that matters is not lead time but lag time

after navigation begins before the user is able to predict the correct passing.

Our simulated evaluation confirmed our first hypothesis by revealing statis-

tical evidence that SM achieves consistently lower trajectory entanglement than

other representative multi-agent collision avoidance approaches. Furthermore,

our user study confirmed our second hypothesis by demonstrating a positive
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Figure 5.8: Relation between the Complexity Index and (a) time until two spe-
cific agents pass each other (green points/line) and (b) median time until users
give a correct prediction of the passing (blue crosses/line). Times are normal-
ized to the total length of the relevant video.

correlation between trajectory entanglement and the time taken for a correct

prediction of a passing between two agents. In other words, executions of lower

trajectory entanglement are more legible. From these, we may assert that the So-

cial Momentum framework appears to produce legible behaviors in multi-agent

environments. This feature is of particular importance for robots navigating

crowded human environments, where no explicit communication takes place

among agents and no formal rules are guiding traffic, such as pedestrian envi-

ronments.
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5.4 Discussion

We presented a planning framework for legible motion generation in multi-

agent environments. We approached legibility from a topological perspective

and introduced the concept of legible avoidance as a maneuver that clearly indi-

cates the way an agent plans to avoid another (e.g. right or left side). Based on

this idea, we designed the Social Momentum planning framework that enables

agents to generate intent-expressive and socially compliant behaviors in multi-

agent environments. Statistical evidence, extracted from extensive simulations

and from a user study with human participants demonstrated the ability of our

framework to produce legible behaviors in multi-agent environments. This re-

sult is particularly important for operation in human environments with no ex-

plicit communication among agents, such as pedestrian environments. Ongo-

ing work involves validating our approach by conducting experiments on an

autonomous social robot, navigating academic hallways.
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CHAPTER 6

EFFECTS OF DISTINCT ROBOT NAVIGATION STRATEGIES ON

HUMAN BEHAVIOR IN A CROWDED ENVIRONMENT

State-of-the-art social robot navigation algorithms often lack a thorough ex-

perimental validation in human environments: simulated evaluations are of-

ten conducted under unrealistically strong assumptions that prohibit deploy-

ment in real world environments; experimental demonstrations that are limited

in sample size do not provide adequate evidence regarding the user experi-

ence and the robot behavior; field studies may suffer from the noise imposed

by uncontrollable factors from the environment; controlled lab experiments of-

ten fail to properly enforce challenging interaction settings. In this chapter, we

contribute a first step towards addressing the outlined gaps in the literature.

We present an original experiment, designed to test the implicit interaction be-

tween a mobile robot and a group of navigating human participants, under chal-

lenging settings in a controlled lab environment. We conducted a large-scale,

within-subjects design study with 105 participants, exposed to three different

conditions, corresponding to three distinct navigation strategies, executed by a

telepresence robot (two autonomous, one teleoperated). We analyzed observed

human and robot trajectories, under close interaction settings and participants’

impressions regarding the robot’s behavior. Key findings, extracted from a

comparative statistical analysis include: (1) evidence that human acceleration

is lower when navigating around an autonomous robot compared to a teleop-

erated one; (2) the lack of evidence to support the conventional expectation that

teleoperation would be humans’ preferred strategy. To the best of our knowl-

edge, our study is unique in terms of goals, settings, thoroughness of evaluation
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Figure 6.1: This study examines the performance of autonomous robot navi-
gation algorithms in crowded pedestrian spaces.

and sample size.

State-of-the-art autonomous navigation frameworks have achieved impres-

sive benchmarks in simulation and to exhibit competent behaviors in experi-

mental demonstrations, field studies, and lab experiments. However, their vali-

dation is often not sufficiently rigorous and in-depth. Simulated evaluations are

inevitably conducted under strong assumptions on the type of the environment,
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the context, and the type of behavior exhibited by other agents; thus addressing

the reality gap problem is not a trivial extension. Experimental demonstrations

contribute a significant step towards deployment to the real world but lack a

significant sample size of repeated interaction with human users and thus statis-

tical power. Large-scale field studies are an important step in the validation pro-

cess of any robotic system as they may provide evidence of robust performance

under challenging settings. Nonetheless, the noise induced by the frequently

massive complexity of a real-world environment may prohibit the extraction of

concrete conclusions about the performance of the robot and the user experi-

ence. Lab studies may definitely isolate the system from external variables and

enable rigorous testing of the desired conditions. However, designing an exper-

iment that will isolate the desired nontrivial interaction between a target system

and human participants is a not an easy task and it may often be observed that

lab experiments with mobile robots do not test a challenging type of setting. Fi-

nally, ensuring the repeatability of the performance of an autonomous robotic

system, exposed to close interaction with humans is also not a trivial task and

often requires frequent maintenance and high costs. Thus, to approach inter-

esting research questions without the complication of exhaustively testing the

autonomy of the platform, a significant amount of research considers only Wiz-

ard of Oz experiments [118]. While the findings of such experiments are often of

great significance regarding the human-robot interaction, they inevitably leave

149



a gap in the validation of the autonomy itself.

6.1 Contributions

In this chapter, we contribute a step towards addressing the outlined gap in the

validation process of social navigation planning algorithms. We present an orig-

inal experiment design, constructed to enforce naturally a series of challenging

implicit interactions between a mobile robot and a group of human participants

that navigate in a shared workspace in a controlled lab environment. A simple

background scenario serves as a driving force towards interesting, nontrivial in-

teractions but also as a way to cognitively load and distract human subjects from

the goal of the experiment. We conducted an extensive, large-scale (N = 105),

within-subjects user study in which we recorded 945 minutes of interaction be-

tween a mobile robot and human subjects (3 at a time). Participants are exposed

to a set of three distinct robot navigation strategies, executed by a telepresence

robot platform. We considered two autonomous navigation strategies and a

teleoperated condition in which a human teleoperates the robot.

We collected human and robot trajectory data, recorded by an overhead mo-

tion capture system, and responses to a questionnaire designed to assess par-

ticipants’ impressions of the robot’s intelligence, social compliance, and safety.

We performed comparative statistical analyses on the collected datasets and re-

port the results. Key findings, extracted by focusing on the close interactions

(distance < 1m) between the robot and human subjects include the following:

(1) human accelerations are significantly lower around an autonomous robot

executing Social Momentum [107] than around a teleoperated one; (2) contrary

to our expectations, we found no evidence to support the hypothesis that hu-
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mans prefer the human-teleoperated navigation strategy—in fact humans did

not distinguish between conditions in their ratings; (3) teleoperated motion

that follows the same high-level rules as autonomy results in lower topological

complexity [42] than autonomy, an observation potentially reflecting the more

global character of human decision making for navigation tasks.

6.2 User Study

In this chapter we present an IRB-approved (approval code: 1805008009) lab

study, focused on the evaluation of a set of distinct robot navigation algorithms

with respect to social compliance. The lab environment allows us to have signif-

icant control over variables that can interfere with the experimental setting. We

leverage this level of control to enforce challenging navigation behaviors in a

natural fashion through the design of an original experiment scenario and task.

We enforce a setting of implicit, nonverbal social engagement among agents,

similar to the type of interaction among walking pedestrians so that we can

study phenomena involving collaborative collision avoidance processes, as ob-

served by Wolfinger [148]. Furthermore, we construct a moderately crowded

scene that balances close interactions with space for the robot to showcase its

distinct navigation strategies (see Figure 6.1). We also ensure the emergence

of nontrivial interactions, involving challenging collision-avoidance maneuvers

between participants and the robot through the definition of rules. Moreover,

we motivate natural walking behaviors by not disclosing the real purpose of the

study until the debriefing process and by increasing participants’ cognitive load

through the background scenario and task. Finally, we consider three conditions
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and keep the total duration less than thirty minutes to facilitate recruiting and

minimize potential effects resulting from participants’ fatigue.

6.2.1 General Experiment Procedure

Our study is organized into a set of experiment sessions. In each session, three

different human subjects participate in a set of three experiment trials. Before

the first trial, participants are asked to give written consent to confirm their par-

ticipation and optionally to be video recorded. A member of our research team

delivers the instructions and answers questions. During each trial, participants

repeatedly visit a set of stations inside a rectangular workspace of area 16m2 (see

Figure 6.3), driven by a fictional scenario. In parallel, a mobile robot (a Suitable

Technologies Beam Pro, equipped with a quad core i7 processor laptop from

2017), shown in Figure 6.2, also moves between the stations. During each trial,

the human and robot trajectories are tracked and recorded through an overhead

motion capture system of six high-accuracy (< 1 mm), high-fidelity (frequency

180 Hz) cameras and videotaped if participants gave consent. Real-time track-

ing was enabled through the use of construction helmets (Figure 6.2) with reflec-

tive markers. After each trial, participants are asked to fill in a questionnaire,

containing questions about their impressions from their interactions with the

robot. At the end, participants are asked to provide basic demographic data

and information regarding their prior experience with user studies and robotics

technology. Participants are then debriefed, compensated and dismissed.
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Figure 6.2: Study apparatus: (a) Beam Pro robot [1]; (b) an easel, representing
a machine with sticky notes, representing completed maintenance tasks; (c)
tracking helmets, sticky notes and markers distributed to participants.

153



Figure 6.3: Top view of the workspace along with example human and robot
trajectories, corresponding to transitions between easels (blue objects).

6.2.2 Background Scenario and Task Description

Participants are asked to imagine that they are workers in a factory (the factory

setting helps justify the tracking helmets) and the robot is a supervisor. The fac-

tory environment (lab workspace) contains six machines, represented as easels,

spread around the workspace, as shown in Figure 6.3. Each worker is given

a distinctly colored marker and a contrasting, distinctly colored set of sticky

notes. The duty of a worker is to perform maintenance tasks to machines and

assign tasks for other workers to perform. Assigning a task is done by drawing

a square on the pad of an easel, whereas performing a task is done by posting

a sticky note inside a square drawn on an easel pad. Participants are asked to
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perform only tasks represented with squares of color that matches the color of

their sticky notes. Figure 6.2 depicts the main units of equipment used in this

study.

6.2.3 Trial Description

Before the start of each trial, participants are randomly positioned next to differ-

ent machines and the robot is placed in the middle of the workspace, as shown

in Figure 6.3. A trial is organized into a set of maintenance cycles, initiated by

a gong sound, played by the robot. Each time the gong is played, participants

are instructed to leave their machines towards a non-adjacent machine of their

choosing. Each time participants reach a new machine, they are instructed to

perform up to one pre-assigned task (if one exists) and assign a new task. At

the same time, the robot is navigating in the workspace by following the same

rules of transitioning between stations, i.e. it only moves to a randomly picked,

non-adjacent machine when the gong sound is played. For synchronization

purposes, the gong sound is played when the robot is ready to move towards

its next machine. Each trial lasts exactly three minutes, during which an ambi-

ent factory sound track is played.

6.2.4 Conditions

All participants were exposed to the same three conditions (within-subjects de-

sign), each corresponding to a different navigation strategy, executed by the

robot. To account for potential ordering effects (i.e., due to fatigue, frustra-
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tion, learning), the condition order was methodically varied and approximately

equally spread across all sessions. The selected set of navigation strategies con-

sists of Optimal Reciprocal Collision Avoidance (ORCA) [142], Social Momentum

(SM) [107]) and teleoperation (TE). These strategies1 were mainly selected due

to the diversity of decision making principles that they represent, i.e., ORCA

is designed to be optimal, SM is inherently intention-aware; TE is designed to

appear humanlike. Additional reasons that influenced our selection included:

(1) the fact that ORCA constitutes a common benchmark and work of reference

for multi-agent simulations (e.g. [28, 50, 86, 107]); (2) the existence of an open

source, optimized C++ implementation of ORCA; (3) the ease of implementa-

tion of SM; (4) the widespread use of telepresence robot platforms through tele-

operation via their navigation interfaces. The complexity of a real-world pedes-

trian environment would pose a significant challenge to any of these navigation

planners. However, we believe that an extensive and comparative evaluation

of planners with distinct philosophies provides us with significant insights and

experience for the design of the next generation of social navigation planning

algorithms. The following paragraphs provide short descriptions of the mecha-

nisms underlying the selected navigation strategies.

Optimal Reciprocal Collision Avoidance (commonly referred to as ORCA; in the

results section we will be using the codename OR for brevity) [142] is a decen-

tralized navigation planning framework for the generation of smooth, collision-

free, natural-looking simulations of multi-agent scenarios. It is an optimization-

based approach that determines the velocity of minimal divergence from an

agent’s desired velocity that is guaranteed to be collision-free for a desired time
1Note that the selected robot features differential drive steering; thus to employ the au-

tonomous algorithms considered, we make use of a standard feedback linearization technique
[77].
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horizon. This approach makes local collision avoidance considerations by incor-

porating a model of intentions, based on agents’ current velocities. It operates

however, under the assumption that other agents also run the same decision

making mechanism to guarantee safe and smooth behaviors.

Social Momentum (SM) [107] is a decentralized, cost-based, navigation plan-

ner, designed to generate legible robot motion in multi-agent environments. The

cost is a weighted sum of two functions: one representing efficiency and one

representing social compliance. At planning time, the robot selects and exe-

cutes the action that contributes the best compromise between the two costs.

This policy results in consistent progress towards an agent’s destination while

taking into consideration the collision-avoidance intentions and preferences of

other agents. Unlike ORCA, SM does not explicitly assume that others run the

same policy; instead, it focuses on reading the intentions of others and incorpo-

rates this knowledge into its motion planning process.

The Teleoperation strategy (TE) was implemented through the official naviga-

tion interface provided by the manufacturer [1], using the arrow keys on a stan-

dard laptop keyboard. This interface contains two live streams of video, provid-

ing the teleoperator with real-time video streams of a forward, wide-angle field

of view (top) and a floor view (bottom). Navigation commands may be executed

through a simple keyboard’s arrow keys (or with a mouse). Selected commands

are demonstrated as projected future trajectories on the video streams, provid-

ing visual feedback to the user. The teleoperation condition was executed by the

same member of our research team across all sessions, from a remote location

(outside of the lab). The teleoperator had significant prior experience of the nav-

igation interface for several years. Before collecting data for our final dataset,
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we completed a total of 7 rounds of pilot sessions under different variants of

the final study setup. Thus by the time we officially started the study, the tele-

operator had reached a skill level that qualitatively appeared to be appropriate

for the needs of the condition. Although it is hard to precisely quantify the op-

erator’s skill level, his experience was in the order of several hours prior to the

start of the study and thus we do not believe that his performance evolved over

the course of the study as a result of learning.

6.2.5 Hypotheses

Upon experimenting with the three navigation strategies considered (simula-

tions conducted with SM and ORCA, personal teleoperated teleconference ses-

sions with the Beam), we observed very different patterns of decision making.

These patterns were interpreted as the result of the different design principles

and objectives behind each framework: ORCA was developed to produce ef-

ficient, realistic simulations of virtual multi-agent scenarios; SM was designed

to generate legible robot motion in dynamic multi-agent environments; TE was

based on a navigation interface [1], specifically designed to allow non-expert

users to control a robot intuitively. To the best of our knowledge, these strate-

gies have never been tested against each other under challenging, multi-agent,

experimental settings. It was unclear how close interaction between the robot

and different human participants would affect the motion generated by the dif-

ferent strategies. Furthermore, it was uncertain how humans would react to

different behaviors exhibited by the robot and how this interaction would affect

overall performance for both humans and the robot. Using the dataset gener-

ated by our study, we explore these questions by examining the validity of the
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following hypotheses:

(H1) - Robot Performance: In close interactions with humans: (a) ORCA

generates the most geometrically efficient paths; (b) SM generates the jerkiest

paths; (c) TE generates the most energy-efficient paths.

(H2) - Human performance: Humans navigating in close proximity with

the robot: (a) follow the least jerky paths when the robot runs SM; (b) spend the

least energy when the robot runs TE; (c) spend the most energy when the robot

runs OR.

(H3) - Group performance: Global group (human and robot) behavior under

SM results in trajectories of lower Topological Complexity than the other two

conditions.

(H4) - Human Impressions: Participants consider the behaviors generated

by TE as more socially compliant, intelligent and safe than the rest of the strate-

gies.

6.3 Analysis

We conducted 35 experiment sessions, in which a total of 105 human subjects

were exposed to all three conditions. Subjects were recruited from a university

population (Cornell University), through a centralized, university-run subject-

recruitment website and also through fliers posted across campus. The subjects

(59 female, 45 male, 1 unidentified) were 21.45 years old on average (SD = 3.19

years) with their age ranging from 18 to 33 years. About half of them (57) had

prior experience of user study participation and they rated their familiarity with
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robotics technology with an average of 2.47 (SD = 1.27) on a 5-point Likert

scale.

We collected a dataset comprising the trajectories of all 105 participants and

the robot across all trials. Focusing on dynamic interactions of close proxim-

ity, we split this raw dataset into two datasets of trajectory segments: (a) a

dataset comprising 1033 robot trajectory segments of close interaction with hu-

mans (minimum distance d < 1m) and (b) a dataset comprising 1566 human

trajectory segments of close interaction with the robot (also, of minimum dis-

tance d < 1m). We analyze the trajectory dataset using a set of trajectory quality

measures from relevant literature [57, 86, 107], computed over fixed timestep

intervals (100 timesteps, totaling 0.2 seconds). In particular, we computed: (1)

the average Acceleration per segment, a; (2) the average Energy per segment,

E, where energy is defined as the integral of the squared velocity of an agent

throughout its trajectory; (3) the minimum Distance between the robot and any

other humans per segment, d; (4) Path Irregularity per segment, PI , measuring

the total amount of unnecessary rotation (angle between an agent’s heading and

direction to goal) that an agent exhibits per unit path length [57]; (5) Path Effi-

ciency, E , defined as the ratio of the distance between the endpoints of a segment

over the length of the path that the agent actually followed; (6) time spent per

unit path length over a segment, ⌧ ; (7) Topological Complexity, TC [42, 107], de-

fined as the amount of entanglement among agents’ trajectories throughout a

trial (the Braidlab software package [132] was used for these computations).

We also collected a dataset comprising the responses of all 105 participants to

a questionnaire, containing Likert-scale style questions, based on the instrument

of Bartneck et al. [15] and short response questions.
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Table 6.1: Effect of Navigation Strategy on Robot Behavior

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

a 56.09 28.05 2 65.12 58.94 < 0.0001
E 0.7083 0.3541 2 1015 440.1 < 0.0001
E 0.05796 0.02898 2 999.1 4.825 0.008213
PI 454.4 227.2 2 1012 355.3 < 0.0001
⌧ 116.5 58.27 2 1016 1056 < 0.0001

6.3.1 Effect of Navigation Strategy on Robot Behavior

We model the effect of condition (ORCA, SM, TE) on each one of the trajectory

quality measures considered. We use linear mixed-effects regression models, to

account for both fixed effects resulting from the conditions but also for random

effects resulting from the session and the trial (expected means with confidence

intervals are depicted in Figure 6.4).

One-way ANOVA performed on the models demonstrates a significant ef-

fect of the condition on all robot trajectory quality criteria at the p < 0.05 level

(see table 6.1 for the test statistics and Figure 6.4 for the expected means and

confidence intervals for all criteria) and thus, we find that (H1) is confirmed.

More specifically, it can be observed that ORCA generates the smoothest motion

among all strategies (lowest acceleration, lowest path irregularity, lowest time),

which confirms (H1a). This trend was expected as ORCA selects actions that

minimize divergence from an agent’s direction to goal and desired speed to en-

sure collision avoidance for a desired time window. This results in a smoother

speed profile than other conditions. SM on the other hand, prioritizes intent-

expressiveness by exaggerating its motion to indicate an intended passing-side

intention; this results in higher acceleration (due to rotation) and path irregu-

larity, which confirms (H1b). Finally, TE is the most energy-efficient — which
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confirms (H1c) — but also the least time-efficient of all strategies. These find-

ings could mainly be attributed to the defensive driving style of the teleoperator

and the navigation through arrow keys.

6.3.2 Effect of Navigation Strategy on Human Behavior

Similarly to robot trajectory, we model the dependency of the human trajectory

quality measures to the condition with linear mixed-effects models, accounting

also for random effects of session, trial and helmet per trial. Figure 6.5 depicts

the expected means and confidence intervals for the human trajectory qual-

ity measures, whereas table 6.2 contains statistics extracted upon performing

ANOVA on the models at the p < 0.05 significance level.

Table 6.2: Effect of Navigation Strategy on Human Behavior

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

a 1.415 0.7073 2 250.4 3.888 0.02173
d 0.1075 0.05377 2 231.5 0.5872 0.5567
E 0.112 0.05599 2 253.3 3.449 0.03326
E 0.02977 0.01489 2 68.46 1.959 0.1488
PI 0.5394 0.2697 2 249.4 3.286 0.03904
⌧ 0.08277 0.04139 2 252.7 2.145 0.1192

Overall, we find that (H2) is confirmed. In particular, we see that humans

exposed to the SM condition followed smoother trajectories, of lower acceler-

ation (Figure 6.5a) and path irregularity (Figure 6.5c) than humans exposed to

either ORCA or TE, which confirms (H2a). This was in line with our expecta-

tions: SM’s intention-aware navigation strategy adapts the robot’s behavior to

the preferences of humans, thus facilitating human inference and decision mak-

ing. Further, it was observed that humans spend the least energy when exposed
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to TE, which confirms (H2b). We attribute this finding to the perceived human-

likeness of the motion generated by a teleoperated robot: the embodiment of

human decision making on a robot platform features humanlike traits that po-

tentially enable a higher level of human comfort. Finally, humans spend the

most energy around OR (see Figure 6.5b), which confirms (H2c). This could be

perceived as an result of ORCA’s more predictable motion (minimal divergence

from desired direction). Higher predictability potentially results in higher con-

fidence for participants, which allows them to move faster and thus spend more

energy.

6.3.3 Effect of Navigation Strategy on Group Behavior

We model the effect of condition on the Topological Complexity of the group tra-

jectory (the set of all agents’ trajectories) over a trial, using a linear mixed-effects

model (accounting for random effects of session, trial and helmet per trial).

Overall, we find that (H3) is rejected. ANOVA performed on the model uncov-

ered a significant variance among conditions (F (2, 67.71) = 8.075, p = 0.000716,

see table 6.3, Figure 6.5d). In particular, it was found that the Topological Com-

plexity of trajectories, generated by groups exposed to TE was significantly

lower than both SM and OR. Global group behavior generated in the presence

of autonomy was significantly more complex, despite the fact that the human

teleoperator was following the same rule for transitioning between machines

(random selection of any non-adjacent machine). In other words, autonomous

strategies resulted in more intense mixing among all four agents. This could

be attributed to the mechanisms underlying human navigation, as the decision

making computations under TE were done by the human teleoperator. Lower
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TC represents trajectory entanglement which intuitively corresponds to behav-

iors of passing around as opposed to passing through others. Thus, this trend

could be attributed to the tendency of the human teleoperator to avoid colli-

sions more globally, by avoiding any type of encounter with other participants

whereas the robot was employing a more local collision avoidance mechanism

by sequentially responding to any challenging encounters. This finding is per-

haps unsurprising since both autonomous algorithms considered explicitly fa-

vor the avoidance of closer collisions over further ones.

Table 6.3: Effect of Navigation Strategy on Group Behavior

Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

TC 107.3 53.66 2 67.71 8.075 0.000716

6.3.4 Effect of Navigation Strategy on Human Impressions

We model the effect of condition to each of the Likert scale questions consid-

ered, using a Linear Mixed Effects Regression Model. Table 6.4 contains a list

of the questions that were posed to participants (as 5-point Likert scales, with 1

denoting a negative response and 5 denoting a positive response), grouped into

three different classes: (a) one referring to the robot’s behavior (orange rows);

(b) one referring to participants’ emotional states during the experiment (yel-

low rows); (c) one referring to participants’ expectations about the future pres-

ence of the robot (blue rows). The table also contains the statistics of one-way

ANOVA tests, performed to participants’ responses to each question. Signifi-

cant variance was observed in the responses to the question about the robot’s

intelligence (F (2, 269.73) = 3.115, p = 0.0460) and it was found that participants

rated the intelligence of TE as slightly higher (M = 3.29, SE = 0.11) than both
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SM (M = 3.01, SE = 0.11) and OR (M = 3.04, SE = 0.11). This trend also

suggests a potential perception of the humanlikeness of TE from the perspec-

tive of the participants, which appears to be in line with the fact that they spent

significantly less energy around TE. However, this trend is not reflected in the

responses to the rest of the questions. Therefore, we cannot conclusively con-

firm or reject (H4). It might be the case that the quantitative differences among

conditions in terms of the quality criteria were below the precision of human

perception.

Table 6.4: Effect of Nav. Strategy on Human Impressions

Rating Sum Sq Mean Sq NumDF DenDF F value Pr(>F)

Competent 3.249 1.625 2 269.1 1.875 0.1553
Responsible 0.546 0.2732 2 269.7 0.3047 0.7376
Predictable 0.8769 0.4384 2 270.6 0.3760 0.6870
Compliant 3.599 1.800 2 269.7 2.279 0.1044
Sensible 1.687 0.8435 2 269.7 0.9756 0.3783
Friendly 2.346 1.173 2 269.6 1.299 0.2745
Safe 4.5409 2.270 2 270.0 1.793 0.1684
Pleasant 1.8920 0.9460 2 269.5 1.149 0.3184
Polite 0.9942 0.4971 2 269.8 0.7171 0.4891
Coordinated 2.971 1.485 2 269.4 1.425 0.2423
Intelligent 4.840 2.420 2 269.7 3.115 0.0460⇤

Trustworthy 0.5773 0.2887 2 269.2 0.4823 0.6179
Socially aware 4.507 2.254 2 268.6 2.131 0.1207
Discreet 4.742 2.371 2 270.2 2.238 0.1087
Relaxed 2.603 1.301 2 269.1 1.210 0.2998
Calm 2.405 1.202 2 269.7 1.123 0.3268
Tranquil 0.1069 0.0535 2 269.4 0.0575 0.9441
Noticeable 3.139 1.570 2 270.3 1.341 0.2633
Predict (future) 0.4635 0.2318 2 270.5 0.1937 0.8241
Bump (future) 7.572 3.786 2 270.2 2.682 0.0702

6.4 Discussion

We presented a within-subjects user study design for the experimental evalua-

tion of mobile robot navigation strategies in a controlled lab environment. Our
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experiments involved the navigation of a mobile robot in a workspace shared

with three human participants, under challenging settings of implicit interac-

tion, emulating aspects of pedestrian navigation. We conducted a total of 35 ex-

periment sessions in which 105 human participants were exposed to the same

set of conditions corresponding to three different navigation strategies executed

by the robot. We analyzed the collected dataset through the use of objective

measures (trajectory analysis) and subjective measures (questionnaires asking

for ratings of participants’ impressions of robot’s intelligence, safety and per-

sonality). We found statistical evidence that humans follow less jerky and irreg-

ular paths when navigating around one autonomous navigation condition [107]

than around a teleoperated robot. Furthermore, contrary to our expectations,

humans did not discriminate between conditions, according to their responses

to our questionnaire. Finally, we presented evidence that human decision mak-

ing, as captured in the teleoperated condition, had a more global character than

the autonomous strategies. We plan to investigate this finding further in future

work.

6.4.1 Limitations

Our study encompasses some limitations generally inherent to any HRI study,

and some specific to our scenario. First, a controlled lab environment cannot

emulate the complexity of a real-world pedestrian environment and no back-

ground scenario or task could give rise to perfectly natural human walking be-

haviors. Furthermore, humans lack models of interaction with robotic technol-

ogy, which inevitably affects their behavior around a mobile robot. Even the

robot’s appearance, structure and dynamics could attract attention and distract
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participants from the task. Moreover, the selection of the navigation strategies

inevitably impacts the generalizability of the results. Either of the autonomy

conditions could struggle with erratic human behavior and specifically with

human motion that is suboptimal with respect to intent and flexibility [136]

whereas the teleoperator’s performance may vary across individuals, experi-

ence, skill level, driving style, etc. Finally, the sample of participants, mostly

coming from the undergraduate population of a university introduces another

confound.

6.4.2 Broader Impact

Despite its many limitations, this study is unique in terms of its goals, settings,

thoroughness of evaluation and sample size. As stated in the introduction, this

study was motivated by an observed gap in the literature: we believe that the

validation of social navigation algorithms requires a more thorough process.

The stage of a controlled lab evaluation is an indispensable part of the valida-

tion process and should not be discounted before deploying a robot to the field.

The field of social robot navigation could benefit greatly from extensive in-lab

validation of additional algorithms, under various interaction settings. We hope

that this study will constitute a paradigm for such future studies in terms of its

design and scope and a reference for informing the design of future algorithms,

within the field of navigation and beyond.
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Part IV

Planning with Topologically Robust

Multi-Agent Trajectory Prediction
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CHAPTER 7

MULTI-AGENT TRAJECTORY PREDICTION AND GENERATION WITH

TOPOLOGICAL INVARIANTS ENFORCED BY HAMILTONIAN

DYNAMICS

Several real-world, multi-agent navigation domains, such as pedestrian or

street environments, prohibit the use of explicit communication among agents.

Thus, rational agents need to employ mechanisms for predicting the behaviors

of others to plan collision-free paths. Although predicting the behaviors of oth-

ers in a detailed way is challenging, the assumption of rationality, combined

with the constraints imposed to agents by the environment bounds results in

the definition of a set of qualitatively distinct, global planning alternatives in the

joint trajectory space of all agents, corresponding to different strategies of joint

collision avoidance. Being cognizant of this structure, agents could anticipate

different classes of unfolding multi-agent dynamics. This could enable them to

execute actions of global outlook and consistency, which could allow for consis-

tently expressive, smooth and efficient motion, even in the face of unexpected

events, such as the appearance of agents with heterogeneous policies or agents

with changing intentions. This ability is of particular importance for opera-

tion in human-populated domains, where agents continuously read and react

to the rapidly changing environment. Important domains with these properties

include automobile traffic in parking lots and pedestrian traffic in communal

spaces like hallways.

In this chapter, we present a planning framework for decentralized naviga-

tion planning, based on online multi-agent trajectory prediction. Unlike SCN

from part II, which reasoned abstractly about the emerging trajectory topology
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and SM from part III, which reasoned in a distributed fashion about pairwise

collision avoidance maneuvers, in this chapter we introduce a planner that gen-

erates Cartesian representations of future, topologically distinct multi-agent be-

haviors at planning time in order to plan smooth, collision-free actions of global

consistency and outlook. The main benefit of constructing Cartesian trajectory

representations is the ability to evaluate potential futures with respect to their

likelihood through the incorporation of cost functions related to energy, acceler-

ation, efficiency, social compliance etc. We show that this architecture allows for

rapid rapid adjustment to unexpected events, such as the appearance of hetero-

geneous agents with no collision avoidance mechanisms or agents with chang-

ing intentions.

Our framework is based on the method of Berger [18], which allows for

braiding multi-particle trajectories into desired topological patterns. Our pre-

diction mechanism grows trajectories from agents’ initial configurations to their

predicted destinations in topologically distinct ways. This allows us to intro-

duce desired global properties to the trajectory, in contrast to typical trajectory

optimization methods (e.g. [153]), which act on a trajectory locally. Based on

this mechanism, we present an online algorithm that generates a diverse set of

distinctly entangled multi-agent trajectories and evaluates them with respect to

their quality and likelihood, to select an action that best adapts to other agents’

impending behaviors and preferences. This allows for rapid adjustment to the

changing environment and facilitates robustness to unexpected events such as
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the emergence of heterogeneous agents or agents with changing intentions.

7.1 Foundations

We consider the planning problem for an autonomous agent that navigates to-

wards its destination in a known environment where other agents are also navi-

gating towards their respective destinations. The agent aims at reaching its des-

tination by following an efficient, smooth, collision-free trajectory and assumes

that others share similar objectives, although it has no knowledge of their spe-

cific policies. The agent is not explicitly communicating with others and thus

has no knowledge of their intended destinations or planned paths or policies

but is able to perfectly observe their motion. Assuming that others share similar

abilities and objectives, the agent may form a belief about how they are going

to move in the future so that it can plan a safe and efficient path towards its

destination.

In this chapter, we present an approach inspired by the point vortex prob-

lem [7–9] from fluid dynamics. We design a planning framework built around

the observation that the collision avoidance process for agents navigating on a

plane resembles the dynamics of interacting point vortices in two dimensions.

Treating agents as point masses subjected to vortex dynamics allows us to syn-

thesize multi-agent trajectories with desired topological properties. At planning

time, this technique enables a planning agent to construct several qualitatively

distinct predictions about the future behavior of the system. This allows for an

informed action selection towards facilitating a rapid and robust adjustment to

the changing environment. Since the predictions are made with a global out-

look, this strategy results in a consistently smooth and intent-expressive behav-
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ior, even in the face of unexpected events such as agents changing intentions or

violating the assumption of rationality. Our approach is based on the method

of Berger [18, 19] for generating braided trajectories of multi-particle systems

from topological invariants [19]. In this section, we introduce some preliminar-

ies about point vortex flows, review the method of Berger [18] and present the

key components of our approach.

7.1.1 Hamiltonian Motion for Multi-Particle Trajectory Braid-

ing

A dynamical system whose evolution is described by Hamilton’s equations is

called a Hamiltonian system. Under the Hamiltonian formalism, the state of

a system is completely described by a set of variables corresponding to the

generalized coordinates of the system’s degrees of freedom and their conju-

gate momenta. Hamilton’s equations relate the evolution of an energy func-

tion, called the Hamiltonian, to the evolution of the coordinates and momenta

for all degrees of freedom of the system. In particular, denoting by qj and pj ,

j 2 M = {1, . . . ,m} the generalized coordinate and conjugate momentum of

the ith degree of freedom of a Hamiltonian system respectively, its evolution is

given by:

q̇j =
@H

@pj
, ṗj = �

@H

@qj
,

dH

dt
= 0, j = 1, . . . ,m, (7.1)

where the dot notation indicates time derivatives, H denotes the Hamiltonian of

the system (which is preserved), defined as its total energy, i.e., the sum of the

total kinetic and potential energy of all degrees of freedom of the system.
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Let us now combine the coordinates and momenta for each degree of free-

dom into a complex coordinate zj = qj + ipj , j 2 M . We define an analytic

function

F (z1, . . . , zm) =  (z1, . . . , zm) + iH(z1, . . . , zm), (7.2)

where  : Cm
! R and H : Cm

! R. Berger [18] showed that the Hamiltonian

flow (7.1) results in motion żj , j 2 N = {1, . . . , n}, that follows the Wirtinger

derivative of  with respect to zj . Therefore, the collective Hamiltonian motion

of all degrees of freedom follows the gradient of  and points towards its di-

rection of maximum increase. Berger [18] used this finding to generate braided

trajectory patterns for systems of two and three particles. In particular, he re-

placed  with Topological Invariants [19] towards forcing the system to evolve

along the growth of the topological invariant.

7.1.2 Topological Invariants of Particle Trajectories

Consider a set of n particles, following trajectories ⇠i : [0, T ] ! R2, i 2 N , from

time t = 0 to time t = T and let us collect these trajectories into a system trajec-

tory ⌅ = (⇠1, . . . , ⇠n). A topological invariant over ⌅, may be defined as a function

 : ⌅ ! R that maps the system trajectory to a real number that character-

izes the spatiotemporal topology of the system dynamics. For any distorted,

topology-preserving trajectory ⌅̃ 6= ⌅ with the same endpoints ⌅̃(0) = ⌅(0),

⌅̃(T ) = ⌅(T ), for which ⇠i(t) 6= ⇠j(t), 8t 2 (0, T ) and i 6= j 2 N , a topological

invariant is preserved, i.e.,  (⌅̃) =  (⌅).
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7.1.2.1 The Winding Number

The so called Winding Number is a topological invariant of particular interest

for our problem. Consider a curve � : [0, t] ! C\{0}. The complex winding

number of the curve �, from time 0 to time t is defined as:

�(t) =
1

2⇡i

I

�

dz

z
, (7.3)

where z 2 C. Let us express � in polar coordinates as �(t) = r(t)ei✓(t), where

r(t) = ||�(t)|| and ✓(t) = \�(t). Then, through the use of the Cauchy integral

formula, (7.3) may be decomposed into:

�(t) =
1

2⇡i

Z t

0

ṙ

r
dt0 +

1

2⇡

Z t

0

✓̇dt0 (7.4)

and computing the integrals yields:

�(t) =
1

2⇡i
log

✓
r(t)

r(0)

◆
+

1

2⇡
(✓(t)� ✓(0)). (7.5)

The real part of this integral, w = Re(�), is a topological invariant, counting

the number of times the curve � encircled the origin in the time interval [0, t].

In other words, fixing the endpoints of the curve, any topology-preserving de-

formations are mapped to the same value of the winding number. For closed

curves, the imaginary part of the winding number is zero. In the following sec-

tion, considering open curves (evolving trajectories), we describe how it can be

used to enforce Hamiltonian motion to interacting particles.

7.1.3 Two-Particle Vortex Motion

In this section we put the pieces together to demonstrate a motivating example

from fluid dynamics that constitutes the computational basis of our approach.
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Figure 7.1: Spacetime plot of the trajectories of two agents, navigating in a
circular workspace (left) and projection of their trajectories until time t1, onto
the xy plane, along with the definition of their pairwise winding angle and
winding number (right).

Consider a system of two particles, placed initially at positions a = (ax, ay) 2 R2

and b = (bx, by) 2 R2 with respect to a fixed coordinate system and assume

that a vortex1 lies between them. Point vortex motion prescribes that the x and

y coordinates are conjugate to each other (e.g. the conjugate momentum to ax

is ay) [7]. Let us define the function �ab from the previous section to track the

quantity a � b, i.e., let us set �ab(t) = rab(t)ei✓ab(t), where rab = ||a � b|| and

✓ab(t) = \�ab(t).

Assuming unit vorticity, the Hamiltonian for this system may be written as:

H = �
1

2⇡
log rab. (7.6)

1A vortex is a region in a fluid in which the flow revolves around an axis line.
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Similarly to Sec. 7.1.2.1, we may define the complex winding number of �ab as:

�ab(t) =
1

2⇡i
log(rab) +

1

2⇡
(✓ab(t)� ✓ab(0)), (7.7)

and let us set its real part to a dedicated variable

wab(t) =
1

2⇡
(✓ab(t)� ✓ab(0)), (7.8)

denoting the pairwise winding number of the two curves (see Figure 7.1 for

a graphic representation of the pairwise winding number). We may notice that

Im(�ab) = H . Thus, according to Sec. 7.1.1, the Hamiltonian flow for this system

maximizes the growth of the real part Re(�ab) = wab. This motion corresponds

to the two points rotating about each other at a constant radius, in a counter-

clockwise direction. Hamilton’s equations for this system may be derived as:

(ȧx, ȧy) =

✓
@H

@ay
,�

@H

@ax

◆
=

1

2⇡

✓
�
ay � by
r2ab

,
ax � bx
r2ab

◆
, (7.9)

(ḃx, ḃy) =

✓
@H

@by
,�

@H

@bx

◆
=

1

2⇡

✓
�
by � ay
r2ab

,
bx � ax
r2ab

◆
. (7.10)

We may control the directionality of the rotation by switching the signs in the

right hand side of eqs. (7.9) and (7.10).

7.1.4 Two-Agent Collision Avoidance as Vortex Motion

Treating agents as particles, we may use the outlined method of Berger [18] as a

mechanism for generating two-agent, collision-avoidance maneuvers of desired

topological specification. Given a winding number wab, by multiplying the right

hand sides of eqs. (7.9) and (7.10) with sign(wab), we have a planning rule that
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allows us to grow trajectories for a and b that follow the direction indicated by

wab, with sign(wab) > 0 and sign(wab) < 0 corresponding to right and left hand

side collision avoidance respectively. In a two-agent scene, this may serve as

a prediction of the emerging joint behavior. In a scene with high uncertainty,

where no agent has committed to a passing side, this mechanism allows a plan-

ning agent to anticipate both outcomes. This is useful as it allows the agent to

either enforce its own preference or adapt to the preference of the other agent.

In the following section, we show how we use this method for synthesizing

trajectories of complex topological specifications in environments with multiple

agents.

7.1.5 Multi-Agent Trajectory Generation from Topological Spec-

ifications

Consider the problem of centralized trajectory planning for driving n agents

from their initial positions S = (s1, . . . , sn) 2 R2n to their destinations D =

(d1, . . . , dn) 2 R2n in a collision-free fashion and while following a global topo-

logical specification w, prescribing passing sides to agents. We model w as a tu-

ple of pairwise winding numbers w = (w12, w13, . . . ) from the set of such tuples

W . Assuming that each agent passes each other exactly once on its way to its

destination (agents do not loop around others), the magnitude of wij , i 6= j 2 N

is not important, so we will be using wij to refer to sign(wij). The cardinality

of the set of possible specifications is |W| = 2(
n
2), corresponding to all possible

combinations of passing sides for all agents. It should be noted that although all

combinations in W are topologically possible, in practice, only a subset of them
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are meaningful and likely given agents’ state history and under the assumption

of rationality. Sec. 7.1.6 addresses the problem of evaluating the likelihood and

the feasibility of a topological specification.

We now describe a policy ⇡ : R2n
⇥W ! R2n that can be sequentially iter-

ated to produce a multi-agent trajectory that satisfies a topological specification

w. The policy (referred from now on as HTTG, standing for Hamiltonian Topo-

logical Trajectory Generation) prescribes an action ui 2 R2 to every agent i 2 N ,

synthesized from a weighted consideration of all pairwise collision avoidance

reactions between the agent and all others, towards meeting the pairwise speci-

fications contained in w. The policy is executed repeatedly until all agents reach

their destinations. It may be formulated for agent i as follows:

ui = ⌫i · k
�
ui
att + ui

rep

�
, (7.11)

where ⌫i 2 R is an agent’s desired speed, ui
att, ui

rep are potentials attracting the

agent towards its destination and repulsing it from others respectively and k 2

R is a normalization constant. The potential

ui
att = katt(di � qi) (7.12)

attracts the agent from its current state qi towards its destination di with katt

being an importance weight. The potential

ui
rep = krep

NX

j 6=i

cijwijv
i
j , (7.13)

repulses agent i from each other agent j 2 N , j 6= i, through the velocity vij , de-

rived from eqs. (7.9) and (7.10), with a degree of consideration equivalent to the

criticality of their pairwise collision avoidance, expressed by cij 2 R (the closer
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two agents are, the more critical their avoidance becomes) and along the direc-

tion indicated by wij whereas krep is an importance weight. The choice of the

weighting factors katt, krep expresses the relative significance between goal at-

traction and collision avoidance. The criticality term is designed to be a polyno-

mial function of the distance between two agents, activated when the distance

becomes lower than a threshold. By sequentially executing the outlined policy,

in parallel for all agents, in equal time steps of length dt, the system of agents is

forced to follow the specification w. Note that this method does not guarantee

the attainment of the desired topology. Depending on the number of agents,

their initial configurations and intended destinations and the parameter tun-

ing, the method has a varying control over the topological properties of agents’

trajectories. Sec. 7.2 explores the performance of the method on scenarios with

different numbers of agents.

7.1.6 TANP: Topologically Adaptive Navigation Planning

In this section, we present an online, decentralized navigation planning algo-

rithm that makes use of the described method for generating online a set of

topologically distinct, multi-agent trajectory predictions. The algorithm com-

prises the following sequence of actions: (1) predict the destinations of other

agents; (2) generate a set of candidate multi-agent trajectories that drive agents

from their current locations to their predicted destinations; (3) evaluate candi-

dates with respect to a cost function; (4) execute the next action assigned to the

planning agent from the lowest-cost candidate. In the following subsections, we

describe the main components of the algorithm and provide a detailed presen-

tation of it in pseudocode format (see Alg. 6).
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7.1.6.1 Destination Prediction

In sec. 7.1.5, it was assumed that the planning policy has access to the destina-

tions of other agents. In the settings we are considering (no explicit communi-

cation among agents), this is not the case. Thus, the planning agent needs to

make a prediction about the destinations of others in order to use the policy.

However, in practice, an agent only interacts with others for as long as they

lie within its sensing range, which for current robotic systems is quite limited.

During this amount of time, other agents’ observed behaviors may or may not

be revealing about their specific destination. And in fact, detailed predictions

of agents’ destinations may not be sufficiently informative regarding agents’ fu-

ture behaviors; in crowded environments, the collision avoidance process is a

more significant influence over agents’ behaviors. For this reason, we take a

more practical approach, focusing on coarse predictions of agents’ future loca-

tions.

In particular, we assume that an agent’s sensing range has the shape of a

disk of radius R, centered at the agent’s position, qi. Any agent lying outside

of this disk is not perceived by the agent whereas any agents lying behind the

robot are ignored at the planning stage. For each one of the perceived and ac-

tively considered agents, we approximate their intended direction of motion

by fitting a line to their recent, observed trajectory and projecting their current

velocity on it. We then propagate their current speed along this direction un-

til it intersects the boundary of the sensing disk. For our planning algorithm,

that point of intersection is considered to be that agent’s destination (see Fig-

ure 7.2). This prediction is expected to be a coarse approximation of where an

agent is heading. However, since our algorithm runs in replanning cycles, this
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Figure 7.2: The destination prediction mechanism. The red agent makes des-
tination predictions for all agents, lying within its circular sensing disk and
in front of it.

approximation provides a sufficient amount of detail for the trajectory predic-

tion mechanism of sec. 7.1.5. This mechanism makes use of the assumption that

agents act rationally, i.e., agents’ behaviors are driven by an incentive of mak-

ing progress towards their destinations. Finally, alternative methods of filtering

could be employed to provide more accurate destination prediction; however,

this is not our focus and as our will be shown in Sec. 7.2, this simplistic model

may yield the desired performance.
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7.1.6.2 Outcome Evaluation

The set W contains symbolic representations of topologically distinct outcomes

for the system of all considered agents. Naturally, a significant question that

arises is: which outcome should the planning agent trust and follow? We ap-

proach this problem with the following sequence of computations: (1) we first

evaluate an outcome with respect to its likelihood; (2) we then generate trajec-

tory representations for the set of the K most likely outcomes WK ⇢ W , using

the policy presented in Sec. 7.1.5; (3) finally, we evaluate these K best outcomes

with respect to the physical properties of their trajectory representations.

Probability of an outcome: An outcome is initially encoded symbolically as a

tuple w that prescribes how agents avoid each other throughout the course of

the scene. From a topological perspective, these symbols are independent of

each other; any motion is allowed even if it is not efficient. However, from a

real-world point of view, the collision-avoidance strategies that agents employ

to avoid one-another are coupled and modeling the complex probabilistic rela-

tionships among them is a challenging problem. We are interested in finding a

way to bias our search towards the outcomes that are more likely to occur. We

do so by using the following expression:

P (w|⌅past) = P (w12, w13, . . . |⌅past) /
1

Z

Y

ij

P (wij|⌅past), (7.14)

where ⌅past denotes agents’ past trajectories and Z is a normalization constant

across all w 2 W . This expression was derived by factorizing P (w12, . . . |⌅past)

using the product rule and then substituting each factor with its Bayes’ rule ex-

pression. Similarly to our past work [104], we model P (wij|⌅past) by employing

the physical quantity of angular momentum. For two agents i, j, navigating on

a plane, their angular momentum Lij lies along the z axis. Notice that the sign
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of the z-component of the momentum, Lij
z is an indicator of agents’ passing side

and thus of the winding number of their trajectories wij , with Lij
z > 0 indicat-

ing the emergence of wij > 0 (right hand side collision avoidance) and Lij
z < 0

indicating the emergence of wij < 0 (left hand side collision avoidance). We

incorporate the momentum as a heuristic in a sigmoid model as follows:

P (wij|⌅past) =
1

1 + exp(�wijL
ij
z )

. (7.15)

The greater |Lij
z | is, the greater the mutual intention or preference of agents i

and j over a collision avoidance along the direction of Lij
z is.

Trajectory Evaluation: We evaluate a trajectory representation ⌅w of an out-

come w by computing its total energy E : Z
n
! R, its required immediate

acceleration A : Zn
! R and its safety cost S : Zn

! R. The Energy measure

(sum of squared speeds throughout the trajectory) gives an estimate of the effi-

ciency of an outcome whereas the acceleration measure is indicative of the ag-

gressiveness of the maneuvers required to comply with an outcome. We model

the Safety cost as S(⌅) = exp(�dmin), where dmin 2 R is the minimum distance

between any pair of agents in a trajectory ⌅. Note that other cost functions could

be used to incorporate different considerations such as social comfort (see e.g.

Sisbot et al. [123]).

7.1.6.3 Decision Making

We first rank outcomes at a symbolic level through the use of the probability

distribution, presented in Sec. 7.1.6.2 and determine the set of the K most likely
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outcomes WK . Then, we determine the outcome of lowest cost:

C(⌅) = ↵eE + ↵aA+ ↵sS , (7.16)

where ↵e, ↵a, ↵s are importance weights and finally extract the optimal outcome

through the following optimization scheme:

w⇤ = arg min
w2WK

C(⌅w). (7.17)

The planning agent executes the next action assigned to it from the trajectory

of lowest cost ⌅w⇤ . Figure 7.3 depicts a graphic representation of the planning

scheme.

7.1.6.4 Pseudocode

Alg. 6 summarizes the described algorithm (Topologically Adaptive Navigation

Planning – TANP) in pseudocode format. The algorithm runs in replanning cy-

cles for as long as the boolean variable AtGoal is set to False, indicating that

the agent has not reached its destination yet. At every cycle, the agent first

determines a set of reactive agents, i.e., agents that lie within the robot’s sensing

disk and to the front of the robot’s heading (function Get_Reactive_Agents).

Then, function Predict_Destinations outputs predictions for the destina-

tions of the reactive agents and Get_Outcomes returns a set of topological

representations for outcomes that could emerge in the remainder of the execu-

tion. Function Get_Outcome_Probability returns the probability for each

of the outcomes considered and function Get_Best_Outcomes returns the K

best outcomes. Function HTTG executes the HTTG policy and generates tra-

jectory representations for these outcomes and function Score_Trajectory
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evaluates them with respect to the cost function considered. Finally, function

Get_Best_Next_Action returns the next action for the planning agent from

the trajectory of lowest cost and function Execute Action executes that ac-

tion. The distance between the resulting agent state and its destination is com-

pared to the predefined threshold ✏ and the flag AtGoal is updated to True in

case the agent is sufficiently close to its destination.

Algorithm 6 TANP(q, d,⌅)
Input: q � agent’s current state; d � agent’s intended destination; ⌅past � state

history of all agents; K � Number of outcomes to consider; ✏ � desired
distance-to-goal threshold.

1: AtGoal  False
2: while ¬AtGoal do
3: R Get_Reactive_Agents(⌅past)
4: D  Predict_Destinations(⌅past,R)
5: W  Get_Outcomes(R)
6: P  Get_Outcome_Probability(W ,⌅past)
7: WK  Get_BestOutcomes(P,W , K)
8: Z  ;

9: for all w 2WK do
10: ⌅pred  HTTG(⌅past,w, D)
11: Z  {Z,⌅pred}

12: C  Score_Trajectories(Z)
13: u Get_Best_NextAction(Z, C)
14: q  Execute_Action(u)
15: if ||q � d|| < ✏ then
16: AtGoal  True
17: return None

7.1.7 Complexity and Practical Considerations

The most computationally intense component of our algorithm is the estimation

of the outcome probabilities. For n agents, this computation runs in time O(2n
2
)

–the rest of the computations run in polynomial time. In practice, a replanning
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cycle of TANP on a scenario involving 4 agents and thus the evaluation of 64

topological classes with K = 5, runs at an average of 42ms, with the worst case

being 203ms in a non-optimized MatLab implementation on a MacBook Pro of

2015 with an Intel Core i7 processor of 2.5 GHz, running macOS High Sierra.

Transfer to a faster language and optimization of parts of the code could help

vastly improve performance.

Under the current design, scaling to large n is not possible. However, for

a mobile robot application, we argue that it is also not practical. The sensing

limitations would prohibit the emergence of a large number of agents. Even if

more agents are sensed, pruning them to the subset of directly reactive agents

is a motivated and human-inspired way of reducing the load. Future work in-

volves the design of an online data-driven topology-classification mechanism

that would enable agents to directly estimate the most likely candidates, with-

out brute-forcing their evaluation.

7.2 Results

In this section, we present the performance of the offline planner in generating

trajectories of desired topological properties and the behaviors generated by the

online algorithm in different types of scenarios.

7.2.1 Offline Performance

We demonstrate the performance of the offline motion planner in generating

topologically distinct, multi-agent navigation trajectories. We consider 4 dif-
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(1, 1, 1) (�1,�1,�1) (1,�1, 1) (�1, 1,�1)

(1, 1,�1) (�1,�1, 1) (1,�1, 1) (�1, 1,�1)

Figure 7.4: Top view of trajectories generated by executing the same 3-agent
scenario with all possible topological specifications. The subcaptions denote
the topology tuple that was used as a specification for each execution.

ferent conditions, corresponding to different numbers of agents (2,3, 4 and 5

agents), navigating in a circular workspace of radius 2.5m (agents are repre-

sented as disks of radius 0.3m). For each condition n 2 {2, 3, 4, 5}, we randomly

generate 100 distinct scenarios, by assigning agents initial and final locations

that lead to challenging multi-agent encounters, requiring competent collision

avoidance maneuvers. We execute each scenario, 2(
n
2) times, each with a distinct

topological specification. We measure the success rate of the planner in generat-

ing the desired topology under all conditions considered and report it in Table

7.1 (a trial is considered successful if the planner was able to produce all of

the distinct topologies). The planner parameters were kept constant across con-

ditions and scenarios. It can be observed that the planner performance drops

as the number of agents n increases. The method becomes more sensitive to

parameter tuning, as the effects of the chaotic nature of the vortex problem
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Figure 7.5: Top view of trajectories generated by executing the same 4-agent
scenario with all possible topological specifications. The subcaptions denote
the topology tuple that was used as a specification for each execution.
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Condition 2 agents 3 agents 4 agents 5 agents
Number of Outcomes 2 6 64 1024

Success (%) 1 99.75 89.70 65.48

Table 7.1: Success rate of HTTG in generating the desired, topologically dis-
tinct executions for each of the 100 scenarios consider per condition.

[8] become more significant. In appendix A, Figure 7.4 and Figure 7.5 depict

the trajectories generated by following all possible topological specifications on

an example 3-agent and scenario and an example 4-agent scenario respectively.

Finally, Figure 7.7 shows examples of how the outlined trajectory generation

mechanism may be used for online prediction in scenarios involving two, three

and four agents.

7.2.2 Comparison with Trajectory Optimization

To the best of our knowledge, this is the first work that addresses the problem

of generating trajectories for multiple agents in distinct topologies, specified a

priori. Conceptually similar, the work of Rösmann et al. [119] considered the

problem of generating multiple, topologically distinct trajectories for a single

agent in a static environment with obstacles. However, optimizing multiple tra-

jectories together and accounting for topological constraints while ensuring tra-

jectory smoothness is a challenging problem. Typical gradient-based methods

(e.g. [153]) act on the trajectory locally, with costs comprising several objectives;

thus the gradient action could lose sight of the global, topological specification

in favor of a different, local cost improvement. Furthermore, a differentiable

cost function that would quantify the progress towards a desired topological

outcome is hard to hand-design and we were not able to find any functions

of that form in the literature. Our method constitutes a principled alternative
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Planner Success (%) No. of iterations Time (s)
CHOMP 78.80 80.3325 0.1291

HTTG 98.40 86.8862 0.0048

Table 7.2: Success rates and computation times of HTTG and CHOMP over
500 randomly generated 2-agent scenarios.

to trajectory optimization for this problem. Instead of locally reshaping a set

of trajectories according to the gradients on the trajectory waypoints to attain

local optima, our method grows the trajectories from initial conditions with a

policy that has global knowledge of the desired trajectory topology. Similar to

gradient-based optimization techniques, our method cannot guarantee the at-

tainment of global optima. However, the physical encoding of the topological

specification into the planning mechanism results in satisfactory performance

for a class of problems.

To illustrate the difficulty of automatically synthesizing multi-agent trajec-

tories of desired topological specifications through trajectory optimization tech-

niques, we consider a simple case study, in which we compare the performance

of HTTG with the performance of CHOMP [153]. We randomly generate 500 dif-

ferent scenarios involving 2 agents navigating towards opposing sides of a cir-

cular workspace (workspace has 5m diameter, starting positions are uniformly

distributed along the circumference, speed normally distributed between 0.3m/s

and 1.5m/s for each agent). For each scenario, we randomly sample a passing

side that agents should pass one another. To encode the objective of respecting

a passing side to CHOMP, we construct a cost functional Ftop = 1
2(wab � wdes)2

which approaches zero as the winding number of agents’ trajectories wab ap-

proaches the winding number corresponding to the desired passing side, wdes.

Table 7.2 illustrates the performance of the two approaches, which is measured

with respect to success rate and computation time (non-optimized MatLab im-
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plementation on a MacBook Pro of 2015 with an Intel Core i7 processor of 2.5

GHz, running macOS High Sierra). For CHOMP, a trial is considered successful

if it generates trajectories of the desired topology within 500 iterations whereas

for HTTG, a trial is considered successful if the desired topology is achieved

once the agents reach their destinations. It can be observed that HTTG domi-

nates with a success rate of 98.40% (corresponding to 492/500 successful trials).

The computation time is comparable in terms of iteractions but HTTG requires

almost two orders of magnitude less time in seconds. The benefits provided by

HTTG in terms of success rate and computation time make the consideration of

multiple trajectory topologies at planning time a more practical strategy.

7.2.3 Online Performance

In order to demonstrate the benefits of our online algorithm 6, we perform a

simulation study comprising a series of experiments on the circular workspace

considered in the previous sections (diameter 5m). We consider 9 different ex-

periment configurations, each corresponding to a different group of navigating

agents. In particular, we consider groups of 2, 3 and 4 agents, navigating un-

der three different conditions: (a) a homogeneous condition –all agents run the

same planner; (b) a heterogeneous condition in which one agent runs our plan-

ner and others are moving straight to their goals without avoiding collisions; (c)

a heterogeneous condition in which one agent runs our planner and others are

changing intentions over a destination twice, without avoiding collisions. Note

that the two latter cases are are particularly challenging for decentralized plan-

ners, as a typical assumption they rely heavily on is homogeneity. For reference,

we perform the same experiments with the Optimal Reciprocal Collision Avoid-
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(a) Experiment Time. (b) Safety.

(c) Path Efficiency. (d) Trajectory Acceleration.

Figure 7.6: Trajectory Quality for all experiment configurations considered.
For group size, the same 200 randomly generated scenarios are executed under
each of the conditions considered with both planners. For each condition
and measure, we perform a paired Student’s t-test to compare the populations
yielded by TANP and ORCA. Points with black circular boundaries indicate
rejection of the null hypothesis with p-value < 0.001 whereas points with star
boundaries indicate rejection of the null hypothesis with p-value < 0.05.
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ance (ORCA) [142] (clearance and speed parameters tuned similarly to ensure a

fair comparison). We quantify the performance of the planners with respect to

four aspects of trajectory quality: (1) Experiment time, measured as the amount

of time that the last agent to reach its destination took; (2) Safety, measured as

the minimum distance between any two agents for the homogeneous condition

and as the minimum distance between a TANP/ORCA agent and any other

agent for the heterogeneous conditions; (3) Path Efficiency, measured as the ra-

tio between the length of the optimal path to goal and the length of the path a

TANP/ORCA agent followed (averaged over agents in the homogeneous case);

(4) Trajectory Acceleration, measured as the average acceleration per time step

per TANP/ORCA agent throughout the experiment.

Figure 7.6 depicts the performance of TANP and ORCA under each of the

configurations considered. For each configuration, each planner executed the

same set of 200, randomly generated scenarios. Overall, TANP exhibits the

best time-efficiency for almost all configurations (Figure 7.6a). When executed

under homogeneous settings, TANP establishes a consistently high clearance

from others, which results in a drop in terms of path efficiency (Figure 7.6c) and

a high acceleration per time step (Figure 7.6d). The increased time efficiency

of TANP could be attributed to the implicit consensus that is reached through

the consideration of joint strategies of collision avoidance. The price the TANP

agents pay is increased accelerations and generally lower path efficiency. On

the other hand, ORCA is consistently slower but stably safe across all condi-

tions. Under the homogeneous condition, it achieves the highest path efficiency

and lowest acceleration, which was expected by its optimality-driven design.

This efficiency advantage fades under the heterogeneous conditions, in contrast

to TANP, which demonstrates a more balanced behavior.
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7.3 Discussion

We presented an online planning framework for the generation of adaptive

robot motion in dynamic environments where multiple other agents navigate

by executing generally different policies. Our framework is based on an of-

fline planner that generates a diverse set of multi-agent trajectory predictions.

Each prediction prescribes a different, collision-avoiding behavior to the plan-

ning agent. The agent selects the prediction of lowest cost and executes the first

action from it. This architecture enables an agent to make local decisions with a

global outlook that allows for anticipation of any upcoming agent interactions

and rapid adjustment to them. Simulated examples demonstrate the perfor-

mance of the offline and online parts of our framework. Future work involves

(a) evaluating our algorithm in environments of more complex geometry, (b) re-

ducing its computational load by designing a mechanism that efficiently reuses

past trajectories and (c) performing real-world experiments on a robot platform

navigating in human environments.
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CHAPTER 8

CONCLUSION

In this section, we summarize the main results extracted within this the-

sis, comment on some limitations and provide directions for future work. Fi-

nally, we close with a note, highlighting the importance of benchmarking stan-

dards for the validation of social robot navigation systems and more broadly,

any robotic systems that aspire to operate in close proximity or in collaboration

with humans.

8.1 Summary

Deploying a fully autonomous mobile robotic system in a crowded human en-

vironment, such as a pedestrian scene requires a multitude of system compo-

nents, including: (a) a map or an online mapping mechanism; (b) a localization

mechanism; (c) a decision-making component, involving a mechanism for mo-

tion planning. This thesis considered the latter one, specifically focusing on the

design of planning algorithms for the generation of robot motion that is intent-

expressive, intention-aware and socially compliant, towards improving human

comfort and lowering human cognitive load. The emphasis on intent expres-

siveness and intention awareness was motivated by the insights of studies on

human action interpretation, suggesting that human inference is goal-directed

[12, 32, 33]. The robotics community has already embraced these insights in

research conducted within the area of human-robot interaction resulting in in-

triguing findings highlighting the importance of legibility or readability for ap-

plications such as collaborative manipulation [40] and navigation in the prox-

imity of human subjects [25, 87].
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Inspired by these works, the present thesis proposes the incorporation of

models of the complex multi-agent dynamics into the robot’s decision-making

process. Observing the topological structure of multi-agent collision avoidance

behaviors, the proposed models share a common topological foundation, ex-

pressed through a series of mathematical constructions such as braids [97, 104],

the physical quantity of angular momentum [107], or the winding number [101].

These constructions provide a systematic way of enumerating, labeling and ana-

lyzing multi-agent navigation behaviors but also allow for the design of compu-

tational mechanisms for online inference and planning, through the use of an-

alytical and computational tools from low-dimensional topology [20, 42], fluid

dynamics [8, 131] or generally Hamiltonian dynamics [18]. In practice, these

mechanisms allow for a combined treatment of the problems of motion pre-

diction and motion generation, by incorporating models of inference into the

process of planning. This architecture enables the robot to anticipate the com-

municative effects of its actions on the inference processes of nearby humans

and select actions that clearly communicate its intention of compliance with the

perceived human navigation intentions or preferences.

The benefits of our proposed decision-making schemes can be traced in the

accelerated uncertainty reduction [97, 104] of artificial agents as well as their

simplified patterns of spatiotemporal, multi-agent trajectory entanglement [107]

in simulated scenarios, under challenging interaction settings. Moreover, ev-

idence extracted from the responses of more than 180 human subjects in an

online, video-based user study suggests that humans perceive the behaviors

generated by one of our algorithms as more legible than a set of state-of-the-art

baselines [107]. Finally, evidence extracted from a large-scale (105 human par-

ticipants) experimental lab study [108] suggests that human participants tend
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to follow trajectories of lower acceleration when navigating around a robot run-

ning our Social Momentum algorithm [107].

8.2 Assumptions, Evaluation and Limitations

The core of this thesis are the technical Parts II, III and IV, presenting three dif-

ferent approaches for planning socially competent robot navigation. Although

all of them are united under the same main theme, each one considers a slightly

different setup, focusing on a different aspect of socially competent navigation.

For this reason, different performance criteria were employed to validate each

of them. In this section, we summarize the general assumptions and design de-

cisions made across all parts and then focus on each part separately, explaining

the distinct goals set and the evaluation process followed, in a comprehensive

and comparative fashion. We also mention some limitations of the considered

evaluation.

All frameworks share the same basic setup involving a set of multiple agents

navigating from an initial position to a final configuration on a shared workspace.

Agents are assumed to be able to generate velocities towards any direction dic-

tated by the planning algorithm, i.e., we do not examine the effect of constraints,

imposed by system dynamics. Furthermore, the agents are assumed to be acting

rationally in the sense that they always aim at making progress towards their

destinations. They also generally intend to avoid collisions with other agents

that they encounter on their way. However, they are constrained to not explic-

itly exchange any information regarding their intended goals or planned paths

with each other. Thus, in order to avoid collisions, they rely on the assumption
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that others also employ collision-avoidance mechanisms and on their incentive

to avoid collisions.

Our simulated evaluations considered an obstacle-free circular workspace

and agents were set to move between antipodal points of its circumference. This

was done to showcase the ability of our model to capture the multi-agent inter-

actions without the obstruction of obstacles or the influence of the environment

geometry. Again, this was done intentionally to remove the introduction of ad-

ditional noise to our evaluations. However, this setup is a simplification that is

rarely found in the real world.

Finally, a central idea in the whole thesis is that a prediction of the emerg-

ing topological pattern of a multi-agent trajectory in space-time could allow an

artificial agent to understand the implications of its navigation behavior on the

decisions and inference of other agents. It was hypothesized that this type of

prediction (of qualitative nature) could allow for socially competent navigation

in crowded environments. The proposed frameworks explore and investigate

the validity, potential and implications of this idea for multi-agent navigation

scenarios under a variety of different settings.

8.2.1 Reasoning about Multi-Agent Navigation Strategies

Part II introduces braid groups [20], as a data structure that can represent a

multi-agent navigation behavior. The expressiveness of this representation al-

lows us to enumerate the set of all possible multi-agent navigation strategies

that a set of agents could follow to navigate towards their destinations in a

collision-free fashion. We leverage this feature to design a belief distribution
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that enables a robot to reason about the uncertainty of the emerging topology

of collision avoidance in a principled way. This belief informs the motion plan-

ning; in fact, at every time step the robot compromises between reducing the

uncertainty of that belief with progress towards its destination. We evaluate

this planning architecture in simulated scenarios involving multiple heteroge-

neous and homogeneous agents navigating discrete and continuous domains.

One of the benefits from the introduction of braids as a representation for

multi-agent navigation is its reciprocity. A multi-agent trajectory embedded

in the three dimensions of space and time may be abstracted into a topologi-

cal braid upon projection onto a selected projection plane that includes time.

This abstraction specifies a temporal sequence of trajectory crossings that cor-

respond to pairwise passings between agents. These crossings are labeled by

symbols (braid generators) which are put into a temporal order to form a braid

word. This transition from 3 to 2 dimensions results in loss of information.

More specifically, depending on the selection of this plane, a different braid

(and thus, braid word) may emerge. Internally, as long as an agent is consis-

tent throughout consequent time steps with a projection plane, this will not

pose any representational issues. However, a set of agents that use different

projection planes, may represent the same braid with different symbols (braid

words). It should be noted though that these braids are homotopy-equivalent,

i.e., one can be deformed to another through an operation involving continuous

trajectory deformation without any trajectory intersections. In fact, in Part II,

we demonstrated evidence that a set of agents employing different projection

planes in their braid representations are indeed capable of achieving a rapid

decrease of their uncertainty (entropy reduction) and converge to a state of con-

sensus over a joint navigation strategy fast. We also demonstrated that even
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heterogeneous agents, agnostic of the braid representation and lacking a belief

over braids are capable of leveraging the prosocial behavior of another agent

(that informs its path by reasoning about braid uncertainty) and benefiting by

reaching their destinations faster.

Our evaluation is focusing on the spread of information and the uncertainty

reduction. We chose this information-theoretic point of view as we wanted to

evaluate the ability of our framework to enable a set of non-communicating

agents to implicitly coordinate. We model uncertainty as the information en-

tropy of the belief distribution over braids. We compute the entropy of the be-

lief distribution for each agent and compute its average across all agents per

time step. We report the convergence of this quantity over time, until all agents

reach their destinations, and show that it decreases rapidly when agents run

our algorithm. We also examine the implication of this observation for the task

performance by measuring the time agents take to reach their destinations. We

show that indeed when uncertainty drops faster (under our algorithm), agents

arrive at their destinations faster.

8.2.2 Reasoning about Pairwise Collision Avoidance Intentions

Part III introduces the Social Momentum (SM) planning framework, a planner

that attempts to retain the benefits of reasoning about joint strategies with a

lower computational load. SM does so by ignoring joint strategies that do not

include the robot, only considering the set of pairwise collision-avoidance ma-

neuvers between the robot and all other agents. The planner generates an action

that compromises between progress of the planning agent towards its destina-
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tion and compliance with the preferences and intentions of other agents. This

is implemented through the use of a heuristic based on the physical quantity

of angular momentum. The planning agent repeatedly computes the pairwise

angular momenta involving itself and each of the other agents and acts towards

reinforcing their directions, while making progress towards its destination.

The SM framework was designed to generate legible navigation behaviors

in a multi-agent environment. We focused on evaluating the performance of

our framework in achieving this goal. In the absence of established metrics to

do so, we introduced the topological quantity of the Topological Complexity

Index as a proxy for assessing the legibility of multi-agent navigation behav-

iors. This metric quantifies the amount of spatiotemporal entanglement of a

multi-agent trajectory, which is indicative of the complexity of the behavior that

agents followed throughout the execution. We hypothesized that this quantity

is related to the legibility of the trajectory followed by agents. Our findings from

an online user study with more than 180 participants revealed evidence that in-

deed low complexity implies high legibility. Under the light of this finding,

we conducted extensive simulated experiments involving homogeneous agents

executing multi-agent navigation scenarios, comparing the performance of SM

with two baselines: the Social Force (SF) model [62] and the Optimal Recip-

rocal Collision Avoidance (ORCA) framework [142]. It was found that indeed

SM results in executions of low topological complexity, which we interpreted

as evidence of the potential of our framework to generate legible behaviors in

multi-agent environments. As a reference, and to ground the described finding

to existing work, we also conducted a comparative analysis across baselines,

with respect to the measure of Path Irregularity [57], a metric that characterizes

the geometric complexity of a path by quantifying the amount of unnecessary
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rotation that an agent follows as a result of its collision-avoidance maneuvers.

It was found that the price that SM pays for increased legibility was signifi-

cantly higher irregularity than ORCA, although still significantly lower than SF.

It should be noted that in this part we did not consider the case of heteroge-

neous agents, i.e., we did not explore how our framework would perform in

the presence of agents running different algorithms. This is a simplification in

conflict with our scope of deploying our platform in a real-world environment;

human navigation is vastly different than SM and still not well-understood or

modeled.

We also explored the implications of our findings for real-world scenarios by

conducting a lab study involving groups of humans navigating next to a navi-

gating robot in a constrained workspace. We designed a task that enforced inter-

esting and challenging mixing between the robot and human participants and

considered a set of three different conditions corresponding to different robot

navigation strategies: (a) SM; (b) ORCA; (c) Teleoperation. We collected human

trajectories and responses of the participants to a questionnaire including ques-

tions rating the robot’s intelligence, social compliance and safety and partici-

pants’ emotional state while navigating next to the robot. We evaluated the col-

lected human and robot trajectories by employing a set of physically grounded

measures, including acceleration, energy, time to destination, path efficiency. In-

teresting findings include: (1) the confirmation of the expected planner traits in

the presence of humans (ORCA was still the most efficient, SM had high accel-

erations, Teleoperation was the most cautious); (2) evidence that humans follow

low-acceleration paths next to SM; (3) evidence that the topological complexity

of the group (human-robot) behavior is significantly lower than the complex-

ity of the autonomous conditions; (4) no significant variance of human ratings
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across conditions.

We interpreted the finding of low-acceleration paths in the presence of a

robot running SM as evidence of increased human comfort next to our frame-

work. Low acceleration implies fewer switches between different speed lev-

els, which we considered as an indication of smoother and more comfortable

navigation. Further, we interpreted the low-complexity group behaviors in the

presence of a teleoperated robot as the result of a significantly different plan-

ning horizon between the teleoperation and the two autonomous conditions.

Specifically, we interpreted the low-complexity behaviors as the result of long-

horizon planning from the part of the human teleoperator. The human antic-

ipated multi-agent encounters more globally than the autonomous algorithms

and took action earlier, avoiding complex interactions more effectively. Finally,

we interpreted the low variance in human ratings across conditions as an indica-

tion that all navigation strategies were similarly perceived from the perspective

of participants. This finding rejected our hypothesis and conventional expec-

tation that teleoperated navigation would be perceived as more humanlike or

intelligent by human participants (ANOVA performed on all questions did not

demonstrate significant variance across conditions), which is an indication that

the autonomous algorithms performed competitively enough next to the tele-

operation.

All in all, it should be noted that more research should be done to establish

our interpretations more concretely. From the correspondence between Topo-

logical Complexity and Legibility to the use of physically grounded metrics to

quantify the performance of the planners, additional studies are necessary to

prove the validity of such measures for the analysis of human and robot nav-
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igation. Furthermore, additional research should be conducted to determine

an appropriate set of questionnaires that shed light to humans’ perceptions of

competent robot navigation.

8.2.3 Topologically Robust Multi-Agent Trajectory Prediction

Part IV introduced a framework for on-line trajectory generation from topolog-

ical specifications. The framework makes use of the same machinery as Social

Momentum (Part III), focusing on the topology of the pairwise collision avoid-

ance relationships among agents. However, in this part, we explore the foun-

dations of this machinery. We observe that angular momentum –the core of

the Social Momentum cost function– is directly related to the topological in-

variant of the winding number. In fact, the gradient of the winding number of

a two-agent trajectory contributes velocities that follow the direction of maxi-

mum increase of the angular momentum (assuming constant speeds). We make

use of this property to braid trajectories of desired winding, specified in a sym-

bolic form comprising signs of pairwise winding numbers among agents. We

demonstrate the robustness of our framework by reporting its performance in

generating trajectories of desired topologies involving 2,3 and 4 agents. Our ap-

proach outperforms a trajectory-optimization baseline in terms of success rate

and computation time. The proposed framework is also used for on-line motion

planning in multi-agent navigation scenarios. We design a planning algorithm

that iteratively generates a set of topologically distinct multi-agent trajectory

predictions, essentially combining the processes of prediction and generation

into a single, joint prediction step. We evaluate this algorithm in challenging

multi-agent navigation scenarios with homogeneous and heterogeneous agents.
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We show how this mechanism of joint trajectory prediction allows the planning

agent to rapidly adapt to the behaviors of agents with changing intentions or

agents with no collision-avoidance mechanisms. We report the performance of

our framework in a comparative simulation study agains the Social Force [62]

and Optimal Reciprocal Collision Avoidance [142] frameworks. Through this

analysis, we observe the benefits of our approach including high time efficiency,

low acceleration and safe clearance from other agents.

In terms of our offline trajectory generation framework, as shown in our re-

sults section, our framework may fail when tasked with the generation of highly

complex multi-agent behaviors. This can be due to the consideration of infea-

sible specifications and to the sensitivity of the approach to parameter tuning.

As the number of agents and the complexity of the desired topological pattern

increase, the sensitivity of the system to the parameters defining the balance

between goal-direction and collision-avoidance increases. Local velocity deci-

sions could have significant effects of global horizon to the resulting joint be-

havior. We showed that for systems with up to 4 agents, the success rate of

our framework is always higher than 89%. However, it would be interesting

and important to explore the stability properties of the approach and find out

exactly under which conditions a failure (defined as the violation of a desired

topological specification) arises. For systems with 2 and 3 agents, we see almost

total stability. For systems with 4 agents the performance drops about 10% and

in the case of 5 agents, we see a significant drop to 65%.

Similarly to the previous section, we must acknowledge that the selection of

the evaluation criteria (energy, acceleration, time, clearance) could be debated

and does not necessarily paint the complete picture of our framework. Again,
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the criteria selected were physically grounded and well-motivated, but they in-

evitably leave several elements out. For example, we observed qualitatively

that our framework may quickly adapt to the behaviors of heterogeneous and

almost-adversarial agents. Of course, such adaptation requires motion of high

acceleration, as reported in our evaluation. However, it was not clear how we

could measure the property of adaptation in a quantitative and objective man-

ner.

8.3 Future Work

After the completion of the research presented in this thesis, a number of ques-

tions still remain unanswered. In this section, we list and expand on some of

the most significant ones.

8.3.1 The Role of Environment Geometry

A strong assumption made throughout this thesis concerns the geometry of the

environment boundary. We deliberately restricted ourselves to environments

with a circular boundary or no boundary at all, as we wanted to focus on the

topic of multi-agent interactions in an open space. The introduction of geomet-

ric constraints imposes specific patterns on the traffic flow that agents follow,

enforcing different modes of interaction. Notable examples include collision

avoidance on T-intersections or four-way intersections of hallways. Judging

from our everyday-life experience, the mechanisms that we employ to avoid

collisions on such challenging encounters are unclear and often determined on
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the fly by trial-and-error. Understanding how to resolve such encounters or de-

signing a framework for learning how to resolve them poses several interesting

research questions.

8.3.2 Scalability

How many nearby pedestrians should the robot take into consideration when

deciding how to navigate a crowded scene? How can we determine the number

of human agents that are reactive and receptive to the communicative signals

of the robot’s actions? How do humans decide on these numbers? These are

questions that we did not address in this thesis and for which we have not

been able to find relevant quantitative evidence in the literature. This thesis

presented evidence that incorporating an understanding of the unfolding multi-

agent dynamics has beneficial properties for the whole system of agents, includ-

ing improved coordination [104], high legibility [107] and low acceleration [108].

However, throughout all of the experiments conducted to acquire these results,

we only considered systems of at most 5 agents. The theoretical properties of

the topological models introduced in this thesis allow for representing any sce-

nario with any number of agents. However, the computational load required

to determine a navigation strategy increases exponentially with the number of

agents (as shown in Chapter II). Our everyday-life experience suggests that it

is not necessary to explicitly consider everyone around us when we plan our

path in a crowded environment. Besides, the limited on-board sensing and per-

ceptual capabilities of current robotic systems would not allow for the direct

consideration of high numbers of agents.
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8.3.3 Learning Models of Multi-Agent Interactions

In Chapter 4, we presented a learning framework for estimating the emerging

multi-agent path topology that a set of agents engage in to resolve a collision.

The presented model was trained on synthetic data, generated by simulations

of multi-agent scenarios involving three and four agents. These numbers of

agents allowed us to show the value of reasoning about multi-agent interac-

tions. However, depending on the number of agents in the scene, we had to

switch to a different model, trained on a dataset comprising examples involving

the same number of agents. An interesting direction for future work could be

the construction of a single model that can handle different numbers of agents

by directing its attention to the subsets of agents that are more relevant at each

time step.

8.3.4 Multi-Modal Legibility

In this thesis, we only considered the modality of path shape as a tool for intent-

expressiveness. This decision was motivated by the fact that the path shape con-

stitutes perhaps the most basic modality that all mobile robots –independently

of their design– possess at the minimum. Clearly, humans make use of a variety

of additional modalities to communicate clearly their intentions and objectives

to others, while navigating. These include body language, eye gaze and less

frequently, even arm gestures and verbal communication, and combinations of

them. Understanding the mechanisms of multi-modal implicit communication

in humans and transferring them to robots, equipped with the aforementioned

modalities pose ambitious and interesting research questions. Related to that, it
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would be interesting to explore the preferences of humans regarding the choice

of signaling in artificial agents and study the effectiveness of different modality

combinations.

8.3.5 Mechanisms Underlying Human Decision Making

In the lab study presented in Chapter 6, it was shown that the Topological Com-

plexity of the mixed group (robot and human participants) tends to be sig-

nificantly lower when the robot is teleoperated, compared to when the robot

is running one of the two autonomous conditions. We interpreted this find-

ing as an indication of intrinsic differences in the decision-making mechanisms

of humans and robot motion planners. Specifically, we conjecture that human

decision-making mechanisms for navigation feature a more global horizon than

robot motion planners. This results in the selection of actions that proactively

avoid collisions by avoiding the regions of rich interaction. Of course, our study

was limited in the number of planners considered (2 autonomous conditions)

and in the number of teleoperators (only one across all experiments). We be-

lieve that it would be interesting to investigate this hypothesis further through a

series of experiments. The consideration of additional motion planners and the

recruitment of a diverse set of teleoperators would be direct ways of extending

the findings of our study. However, new study designs could also help focus

more directly on the investigation of this question. Overall, this investigation

could be considered as a part of a more general research direction of studying

the structure of human decision making, in navigation and beyond.
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8.3.6 Topological Representations for Robotics

A central foundation of the work presented in this thesis comes from the field of

low-dimensional Topology, the branch of Topology that focuses on topological

spaces of up to four dimensions. More specifically, observing that the entangle-

ment of the trajectories of multiple navigating agents over time carries informa-

tion about their joint collision avoidance strategies, we sought a construction

that would capture it. We found that the formalism of topological braids [20]

provided a formal theory for enumerating all possible classes of entanglement

and thus all possible classes of joint collision avoidance strategies that could

emerge in a multi-agent scene. The use of this representation enabled us to

directly construct an inference mechanism for predicting the unfolding multi-

agent dynamics of interaction in a crowded scene. It also provided us with

computational tools and metrics that were used for analysis and motion gener-

ation.

Braid groups constitute just an example of the many constructions in the

field of Topology that could find use in Robotics. One such example is the use

of annular braids [76]. Annular braids could be thought of as sets of strings

entangled around an annulus and can be labeled through projection onto a vir-

tual cylinder centered on the annulus. A potential benefit of this representation

is that, unlike the standard braid formalism, it frees us from the decision of a

projection plane (see Chapter II), which could potentially result to ambiguity

between consecutive time steps. A potential problem with annular braids is

that they have not been studied as extensively as the standard braid formalism.

Another example is the extension to problems in 3 dimensions with the use of

knots [3]. A knot is an embedding of a circle in R3. Knots form a group and
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could be used as multi-agent behavior primitives for three-dimensional phe-

nomena, in a similar fashion as braids were used for multi-agent navigation on

the plane. This could allow for extensions to interesting problems in air-traffic

control or multi-agent systems of quadrotors.

Overall, the main general benefit for the employment of topological repre-

sentations for robotics applications arises from their powerful abstraction ca-

pabilities that allow for the encoding of complex behaviors into symbols. This

naturally favors the development of methodologies for inference and symbolic

planning that are of particular interest for robotics applications. One drawback

of topological representations is that they naturally result in data compression

and loss of information. For example, in order to label a multi-agent trajectory

as a braid, we need to project it onto a selected plane. Once we do so, we lose

information such as the clearance between agents or their velocity components

that are orthogonal to the projection plane. This property may or may not be

problematic, depending on the application. Caution however must be taken

when transitioning from geometric representations to topological ones and vice

versa. This observation could also motivate further research on the develop-

ment of novel representations that result in desired levels of abstraction while

retaining a sufficient amount of information for a given task.

8.4 The Need for Benchmarking

This thesis makes a unique contribution in the area of social robot navigation.

First, it contains a comprehensive presentation of the complete development

process, from the conception of abstract mathematical models of multi-agent
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navigation to the design of motion planning algorithms. Then, it presents an

extensive validation process, ranging from simulations of challenging multi-

agent scenarios to lab experiments with human participants.

Despite the wide interest in the development of social navigation frame-

works, the majority of existing works contains simulated evaluations, under

strong assumptions on the scenarios, environments and agent behaviors consid-

ered. Relatively fewer works contain qualitative evidence collected from limited

in sample size experimental demonstrations whereas even fewer present find-

ings from large-scale field studies, which tend to suffer from the noise induced

by the uncontrolled variables of the real world. Particularly rare are the lab stud-

ies that make a rigorous validation of the fundamental properties of proposed

frameworks. The design of such studies is challenging; isolating the exact el-

ements that one desires to test requires a carefully selected setup, script and

performance from the part of the experimenters. Furthermore, there is a consid-

erable cost associated with acquiring the required equipment and compensating

human subjects for their participation.

However, we argue that social navigation frameworks and more broadly,

any human-robot interaction framework or technology that aspires to gener-

ate socially compliant behaviors and integrate seamlessly in a human environ-

ment requires an extensive and in-depth validation process that should verify

the properties claimed by its developers. The importance of extensive in-lab

evaluation for the transition from simulation to field deployment should not be

overlooked. We hope that this thesis will constitute a paradigm and a source of

inspiration for future studies to come. The field is under extensive growth and

there is a multitude of topics to be explored to help develop a fully autonomous
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and socially competent robot pedestrian.

The long process of conducting the research presented in this thesis uncov-

ered a series of complications associated with the process of validation. First,

very few works have released official open-source implementations of their pro-

posed frameworks (e.g. the Optimal Reciprocal Collision Avoidance framework

[142]). Some works are relatively easy to implement from scratch (e.g. the Social

Force Model [62]) and thus also relatively directly accessible. However, others

–including a significant portion of the state-of-the-art– are not easy to imple-

ment, as a result of the lack of public access to their datasets (e.g. [86, 138]). This

renders any comparison with them practically impossible, especially consider-

ing the lack of existing well-formatted, noise-bounded, open-source datasets.

In contrast to other fields (e.g. Computer Vision), in which a multitude of well-

formatted and openly accessible datasets exist to train on, in the area of robot

navigation, to the best of our knowledge, no such datasets exist.

This situation calls for a more active engagement of the research community

in the area of social navigation. The establishment of a concrete set of bench-

marking standards appears to be a significant step that the field needs to make

in order to ensure the quantification of the progress and the definition of fu-

ture goals. For example, an extension of the protocol proposed by Sprunk et al.

[124] could include a set of validated instruments and tasks that focus on the

evaluation of social compliance and human comfort.
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for braids and loops, 2013–2017. URL http://arXiv.org/abs/1410.

0849. Version 3.2.3.

235

http://arXiv.org/abs/1410.0849
http://arXiv.org/abs/1410.0849


[133] Andrea Thomaz, Guy Hoffman, and Maya Cakmak. Computational

human-robot interaction. Foundations and Trends in Robotics, 4(2-3):105–

223, 2016.

[134] Sebastian Thrun, Michael Beetz, Maren Bennewitz, Wolfram Burgard,

Armin B. Cremers, Frank Dellaert, Dieter Fox, Dirk Hähnel, Chuck Rosen-

berg, Nicholas Roy, Jamieson Schulte, and Dirk Schulz. Probabilistic al-

gorithms and the interactive museum tour-guide robot minerva. The In-

ternational Journal of Robotics Research, 19(11):972–999, 2000.

[135] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the gradient by

a running average of its recent magnitude. COURSERA: Neural Networks

for Machine Learning, 2012.

[136] Pete Trautman. Sparse interacting gaussian processes: Efficiency and op-

timality theorems of autonomous crowd navigation. In Proceedings of the

IEEE Conference on Decision and Control (CDC), pages 327–334, 2017.

[137] Pete Trautman. Breaking the human-robot deadlock: Surpassing shared

control performance limits with sparse human-robot interaction. In Pro-

ceedings of the Robotics: Science and Systems Conference (RSS), 2017.

[138] Peter Trautman, Jeremy Ma, Richard M. Murray, and Andreas Krause.

Robot navigation in dense human crowds: Statistical models and ex-

perimental studies of human-robot cooperation. International Journal of

Robotics Research, 34(3):335–356, 2015.

[139] Adrien Treuille, Seth Cooper, and Zoran Popović. Continuum crowds.
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