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Abstract

We focus on motion planning for social robot navigation in crowded
environments such as pedestrian scenes. Navigating such environ-
ments is a difficult task for a robot mainly due to the lack of con-
crete rules regulating traffic and the lack of explicit communication
among agents. Recent works tend to account for these complica-
tions by attempting to reproduce selected social conventions or
imitate selected patterns of observed human behavior, yielding only
domain-specific performance. Our key insight is that crowd naviga-
tion exhibits topological structure, in the sense that the navigation
strategies of rational agents in a shared space are coupled. For in-
stance, in a narrow hallway, two agents must either agree on passing
from the left or the right side to avoid collisions. Understanding
this structure may enable a robot to make principled decisions even
in the absence of detailed models of human navigation. Based on
this observation, we design a motion planner that leverages topo-
logical-level inference rather than detailed trajectory prediction. A
physics-inspired metric guides the robot towards actions that com-
ply with the unfolding trajectory topology. Our findings from an
online, video-based user study with 180 human subjects illustrate
the efficacy of our planner in generating trajectories perceived as
intent-expressive by human users. Moreover, evidence extracted
from a follow-up in-lab user study with 105 participants suggests
that human acceleration is low when navigating in close proximity
to an autonomous robot running our planner.

1 Introduction

As robots start entering human environments to perform a vari-
ety of tasks, the need for complying with established social norms
and human expectations becomes increasingly important. Within
the domain of mobile robotics, this is particularly evident when
deploying a robot in a crowded human environment. Due to our
limited understanding of the complex mechanisms underlying hu-
man navigation [25], roboticists often employ practical engineering
approaches such as modeling humans as moving obstacles [20],
attempting to reproduce selected social conventions [2, 10, 19, 21]
or imitate observed patterns of human behavior (1, 8, 9, 12, 24]. The
highly interactive nature of pedestrian environments often breaks
such approaches yielding notable empirically observed issues such
as: (a) the "reciprocal dance" [4], a short deadlock situation in which
the human and the robot oscillate around their position as they at-
tempt to agree on a passing side, a phenomenon typically attributed
to oversensitivity of the robot’s strategy; (b) the "freezing robot
problem" [22] in which an overcautious algorithm gets the robot
stuck in place by erroneously determining that at its current state
there exists no collision-free path to its destination. Observing that
human and robot motion in crowded domains is tightly coupled,
a number of works have proposed navigation frameworks based

- " )
Figure 1: Snapshot from our user study [14] examining the perfor-
mance of our navigation algorithm in crowded pedestrian spaces.

on joint behavior prediction models, explicitly reasoning about the
effects of the robot’s actions on the inference and decision making
of human bystanders [2, 9, 11, 22].

Following up on this line of work, our unique insight is that in
crowd navigation, the coupling of multi-agent behavior exhibits a
topological structure. Explicitly incorporating this structure into the
robot’s decision-making policy has the potential of enabling robust
adaptation to the emergence of unexpected human behaviors. Fur-
thermore, understanding and monitoring the multi-agent dynamics
gives the robot the opportunity to proactively reinforce the expec-
tations of bystanders about its navigation intentions. Over the past
few years, this rationale has resulted in the design of a series of
motion planners making use of topological models of multi-agent
navigation [13, 15-17] as well as a series of user studies that illus-
trates the value of topological features for multi-agent and crowd
robot navigation [14, 18]. In this short paper, we summarize some
of our findings and present directions for future work.

2 The Social Momentum Planning Framework

Consider two agents navigating towards their destinations in a
shared workspace. In order to reach their destinations in a collision-
free and socially compliant fashion, agents need to negotiate and
follow a strategy of collision avoidance (e.g., right or left passing),
while respecting the personal space of each other [6]. To quantify
how well agents are doing with respect to both of these specifica-
tions, we construct an index, defined as an analogy to the physical
quantity of Angular Momentum.



Figure 2: Social Momentum: The planning agent (red color) is mov-
ing towards the red target X, while complying with its pairwise mo-
menta with all other agents.

Assuming unit masses for the two agents, the angular momentum
of their system with respect to its center of mass C is defined as:
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are agents’ positions, defined with respect to their center of mass
rc =(qa +qB) /2. ®)

For a system of agents navigating on the horizontal plane, the
angular momentum is a vector perpendicular to the workspace,
pointing along the positive direction of the z-axis for counterclock-
wise agent rotations and along the negative direction of the z-axis
for clockwise rotations, thus encoding the right and left passings
respectively. Its magnitude depends on the distance between the
agents and also on the angle of their velocities, with larger distances
and antiparallel velocities scoring higher. Thus, we observe that
the angular momentum may be used: (a) as a tool to monitor an
emerging avoidance protocol (right/left passing); (b) as a tool to
generate easily interpretable avoidance maneuvers in compliance
with the preferences of the other agent and in consistency with
previous behaviors of the agents.

In a crowded workspace, an agent interacts with multiple others
at the same time, in the sense that every action taken broadcasts
signals of intentions or preferences over avoidance strategies. We
express this observation through the Social Momentum index L,
defined for agent i as a real function £ : A — R over the agent’s
action space A:

S willl(al. i sign ((Lif)Ti"f(a)) > 0Vj € N;
L(a) = 1 j#i 4

0, otherwise

where L (a) denotes the expected pairwise momentum between
agents i and j, upon agent i taking an action in consideration, a € A
and agent j moving with its current velocity, L is their current
momentum and w; € R is a weight, computed as a function of
the inverse of the distance between agents i and j. The quantity

sign ((Lij VILU (a)) indicates whether the expected evolution of the
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Figure 3: Average Topological Complexity of trajectories generated
by executing 200 scenarios with 3, 4, 5 and 6 agents with the Social
Momentum (SM), Social Force (SF) and Optimal Reciprocal Collision
Avoidance (ORCA) models. A theoretical lower bound baseline is
also included for reference. Datapoints marked black correspond
to significantly lower average Complexity of SM than both SF and
ORCA, whereas the datapoint marked green indicates significantly
lower average Complexity of SM than SF, according to paired Stu-
dent’s T-test.

pairwise momentum between agents i and j is in compliance with
their current momentum L¥. A positive sign corresponds to an
action that preserves the current momentum sign and thus the
currently preferred pairwise avoidance protocol. A negative sign
indicates inversion of the established pairwise avoidance proto-
col, which is undesired. For this reason, an action that results to
inversion of a pairwise momentum is assigned a score of zero. Over-
all, higher £ values indicate higher certainty over the emerging
pairwise avoidance protocols between the agent others. The pro-
posed index enables an agent to monitor the compliance among
the intended navigation strategies of multiple agents and select ac-
tions that amplify it. These actions are naturally intent-expressive,
simplifying inference and decision making for other agents.

Based on this index, we design a policy for the generation of
socially compliant robot motion:

a* = argmax {A&(a) + (1 — 1) L(a)}, (5)
aceA

where A € R is a parameter accounting for proper scaling and
weighting of the two quantities. We model the progress function
& : A — Rto be the inverse of the length of the unobstructed line
to destination. The action space A comprises a presampled set of
actions of finite duration that are executable by the agent.

2.1 Simulation Study

Our first step towards validating our policy was a simulated evalu-
ation in which we investigated whether the behaviors generated
with Social Momentum (SM) are indeed socially compliant. To this
end, we employed a measure of Complexity of multi-agent behavior,
the Topological Complexity Index [3]. This notion of complexity
quantifies the intensity of agents’ mixing patterns —the more direct
the encounters among agents are, the higher the topological com-
plexity of their trajectories is. Considering a circular workspace
with a diameter of 5m, and agents represented as discs of diameter
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0.6m, we generated a set of challenging scenarios involving groups
of homogeneous agents navigating towards antipodal sides of a
circular workspace. We compared the performance of SM against
the Social Force (SF) model [7] and the Optimal Reciprocal Colli-
sion Avoidance (ORCA) framework [23] in 4 classes of scenarios,
involving respectively 3, 4, 5, and 6 agents (200 scenarios per class).
Fig. 3 depicts the average Topological Complexity (TC) for each
planner and class of scenarios considered. TC of executions gen-
erated by SF and ORCA appears to be consistently rising with the
number of agents. In contrast, SM exhibits a slower rise; the tran-
sitions between 3 and 4 agents and between 5 and 6 agents are
done with almost constant complexity, with the only rise taking
place in the transition between 3 and 4 agents. Overall, SM achieves
consistently lower topological entanglement with statistical signifi-
cance, except from the case of 3 agents, where the scenarios are not
geometrically challenging to yield significantly diverse behaviors.
Despite this result, the theoretical Lower Bound consistently outper-
forms all planners, providing an illustrative demonstration of their
suboptimality in terms of topological efficiency which reflects the
price of no explicit communication in multi-agent planning. Note
that the constant Complexity Index value of 1.5850 that the Lower
Bound achieves is an artifact of the symmetry of the considered
scenarios (agents traveling to antipodal points in the workspace).

2.2 Online Study

As a next step, we sought to ground the simulation results to real-
world implications. To this end, we conducted an online, video-
based user study, in which we asked participants to watch a series
of videos of simulated executions of scenarios involving 5 agents
navigating a circular workspace (shown from a top view). For each
video, users were asked to predict the way two agents were going
to avoid each other (right or left side). Speed and correctness (the
basis of the legibility definition) were incentivized through a scoring
system that awarded points for quick and accurate answers and
deducted points for wrong or slow responses (Fig. 4 depicts the
study interface). The study used a total of 15 videos, with duration
ranging from 6.3 to 15.7 seconds, corresponding to scenarios of
varying complexity, measured using the Topological Complexity
index [3]. More than 180 users, recruited from the social media
platforms of Reddit and Facebook, contributed a total of 2704 video
views and clicks.

Fig. 5 depicts our findings from analyzing the collected dataset.
The blue trend shows the relation between the Complexity Index and
the median time of correctly predicting the side on which one agent
will pass another. We fit a linear model to the data using iteratively
reweighted least squares, shown in Fig. 5 as a blue line with a 95%
confidence interval. The effect of the Complexity Index on click time
is positive, with a slope of 0.0236, and significant (Student’s t-test,
t =5.60,p < 0.001). In other words, as the topological entanglement
intensifies, users take more time to accurately predict the side of
passing, i.e., more complex scenarios are less legible.

The green trend shows the relation between the Complexity Index
and the time of passing between the two agents. We fit a linear
model to the data, shown as the green line with a 95% confidence
interval. The trend is positive (slope of 0.0833) and nearly significant
(t = 1.93, p = 0.0538). Increased Complexity correlates positively

You answered in 1.818
seconds! That’s faster
than the median time!

left right

Score: 6 points

Figure 4: Study interface: A video of a scenario execution is shown
and users predict how the red agent is going to avoid the blue agent
by pressing the corresponding button at the bottom. The display of
user’s score and performance statistics aim to to incentivize fast and
accurate responses.
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Figure 5: Relation between the Complexity Index and (a) time until
two specific agents pass each other (green points/line) and (b) me-
dian time until users give a correct prediction of the passing (blue
crosses/line). Times are normalized to the total length of the rele-
vant video.

with increased time of passing, and thus with longer, less efficient
interactions.

This study illustrates the implications of our simulated study for
the application of SM as an algorithm for navigation in crowded real-
world environments. SM yields executions of significantly lower
complexity than the baselines considered. Further, we showed that
low Topological Complexity is correlated with high legibility in
multi-agent scenarios. Therefore, SM has the potential of yielding
legible robot behaviors in crowded environments.

3 Lab Study

Our next step was to study the implications of our online study
for robot navigation in crowded real-world environments. To this
end, we conducted a lab study, specifically designed to enforce a
setting of coincidental, implicit, nonverbal encounters between the
robot (a Beam Pro, depicted in Fig. 1) and a group of three human
participants. The study took place in a rectangular workspace with
an area of 16m? which yielded a moderately crowded scene. Under
a fictional factory-setting scenario, the participants and the robot
were assigned a set of fictional maintenance tasks that motivated
their continuous movements across all sides of the workspace. With
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Figure 6: Expected means and confidence intervals for human trajectory quality criteria. Quantities labeled with distinct letters (A, B) are

significantly different (Tukey’s HSD test, p < 0.05).

this design, we elicited a high frequency of close but comfortable
encounters between the robot and participants. In order to motivate
natural walking behaviors, we did not disclose the true purpose of
the study. Participants’ cognitive load from following the scenario
and executing tasks also contributed to this goal. Finally, we con-
sidered three conditions and kept the total duration of the study
under thirty minutes to minimize fatigue effects. The outlined de-
sign was specifically chosen to resemble the typical interaction
among walking pedestrians in public spaces [26].

Each group of human subjects participated in three experimental
trials. Each trial is executed under a different condition, correspond-
ing to a distinct navigation algorithm run by the robot. As baselines
to Social Momentum (SM) [18]), we consider Optimal Reciprocal
Collision Avoidance (ORCA) [23], and teleoperation strategy (TE),
in which a member of the research team controls the robot in a
Wizard-of-Oz fashion. These conditions were selected due to the di-
versity of decision making principles that they represent, i.e., ORCA
is designed to be optimal, SM is inherently intention-aware; TE is
designed to appear humanlike. During each trial, we tracked and
recorded the human and robot trajectories through an overhead
motion capture system.

We conducted 35 experiment sessions, in which a total of 105
(59 female, 45 male, 1 unidentified) human subjects (age M = 21.45,
SD = 3.19), recruited from the student population of Cornell Univer-
sity were exposed to all conditions in groups of 3 (within-subjects
design). Focusing on dynamic interactions of close proximity (min-
imum distance d < 1m) between the robot and participants, we
split the human trajectory dataset into a set of 1566 segments. We
characterized the trajectory dataset using a set of trajectory quality
measures, including: (1) the average Acceleration per segment; (2)
the average Energy per segment, where energy is defined as the in-
tegral of the squared velocity of an agent throughout its trajectory;
(3) the Path Irregularity per segment, measuring the total amount
of unnecessary rotation (angle between an agent’s heading and
direction to goal) that an agent exhibits per unit path length [5].

We modeled the dependency of the human trajectory quality
measures to the condition with linear mixed-effects models, ac-
counting also for random effects of session, trial and helmet per
trial. Fig. 6 depicts the expected means and confidence intervals for

the human trajectory quality measures. We observe that humans
exposed to the SM condition followed smoother trajectories, of
lower acceleration (Fig. 6a; one-way ANOVA: F(2,250.4) = 3.888,
p = 0.0217) and path irregularity (Fig. 6c); one-way ANOVA:
F(2,249.4) = 3.286, p = 0.0390) than humans exposed to either
ORCA or TE, which confirms. This was in line with our expecta-
tions: SM’s intention-aware navigation strategy adapts the robot’s
behavior to the preferences of humans, thus facilitating human
inference and decision making. Further, it was observed that hu-
mans spend the least energy when exposed to TE. We attribute this
finding to the perceived humanlikeness of the motion generated by
a teleoperated robot: the embodiment of human decision making
on a robot platform features humanlike traits that potentially en-
able a higher level of human comfort. Finally, humans spend the
most energy around OR (see Fig. 6b), which confirms. This could be
perceived as an result of ORCA’s more predictable motion (minimal
divergence from desired direction). Higher predictability poten-
tially results in higher confidence for participants, which allows
them to move faster and thus spend more energy.

4 Discussion

While our experiments illustrated the value of topological features
for social robot navigation, we have not yet validated our approach
outside of the lab. Our lab experiments were designed to reinforce
incidental, off-task human-robot encounters, however the complex-
ity of real-world environments would be significantly higher. Future
work involves planning a field study in a crowded environment
such as an academic building.

Furthermore, while our quality measures are physically moti-
vated, they have not been benchmarked. It is still unclear what are
the right metrics and experiments with which we should measure
the performance of social robot navigation frameworks. Further
research should specifically investigate the test methods, variables,
experiments and metrics for benchmarking social robot navigation
research.
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