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Abstract

We focus on decentralized navigation among multiple non-communicating agents in continuous domains without explicit

traffic rules, such as sidewalks, hallways, or squares. Following collision-free motion in such domains requires effective

mechanisms of multiagent behavior prediction. Although this prediction problem can be shown to be NP-hard, humans

are often capable of solving it efficiently by leveraging sophisticated mechanisms of implicit coordination. Inspired by the

human paradigm, we propose a novel topological formalism that explicitly models multiagent coordination. Our formal-

ism features both geometric and algebraic descriptions enabling the use of standard gradient-based optimization tech-

niques for trajectory generation but also symbolic inference over coordination strategies. In this article, we contribute (a)

HCP (Hamiltonian Coordination Primitives), a novel multiagent trajectory-generation pipeline that accommodates spa-

tiotemporal constraints formulated as symbolic topological specifications corresponding to a desired coordination strat-

egy; (b) HCPnav, an online planning framework for decentralized collision avoidance that generates motion by following

multiagent trajectory primitives corresponding to high-likelihood, low-cost coordination strategies. Through a series of

challenging trajectory-generation experiments, we show that HCP outperforms a trajectory-optimization baseline in gen-

erating trajectories of desired topological specifications in terms of success rate and computational efficiency. Finally,

through a variety of navigation experiments, we illustrate the efficacy of HCPnav in handling challenging

multiagent navigation scenarios under homogeneous or heterogeneous agents across a series of environments of different

geometry.
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1. Introduction

Although several instances of centralized multiagent

motion planning problems can be shown to be NP-hard

(Cooper, 1990; Hopcroft et al., 1984; Spirakis and Yap,

1984), humans are remarkably effective at solving a wide

range of multiagent coordination problems ranging from

navigation in dense crowds to driving through street inter-

sections in a distributed fashion under no explicit commu-

nication. Our key observation is that human effectiveness

in tackling multiagent coordination tasks can be partially

attributed to uncertainty reduction, enabled by coordina-

tion. Humans coordinate via sophisticated implicit-commu-

nication mechanisms mapping observed actions to

intentions (Baker et al., 2009; Csibra and Gergely, 2007;

Wiese et al., 2012). They do so by exchanging information

via modalities including body language, eye gaze, path

shape, and even gestures. Specifically in navigation tasks,

these mechanisms enable a seamless and fluent negotiation

over collision-avoidance protocols that has been identified

as the pedestrian bargain (Wolfinger, 1995). This type of

negotiation sets the foundation for decentralized coordina-

tion among pedestrians yielding safe, socially acceptable,

and comfortable co-navigation even in crowded navigation

domains.

Inspired by human effectiveness in tackling crowd

navigation tasks, we seek to develop mechanisms that

leverage implicit-communication as a tool to enable mobile

robots to coordinate collision-free passages in close prox-

imity in a decentralized fashion. The value of implicit
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communication has been recognized by lab studies involv-

ing interaction between a robot and a human agent (Carton

et al., 2016; Kruse et al., 2012): readable motion enables

smooth collision avoidance requiring low mental load from

the human agent. In public crowded environments, this fea-

ture may allow robots to seamlessly integrate, enhancing

human comfort and safety. From a design perspective,

enabling robots to communicate their intentions implicitly

relaxes the need to equip them with specialized communi-

cation components (e.g., screens, turn indicators, speakers,

etc.). This relaxation may afford any general-purpose

mobile robot to leverage the same mechanisms of coordi-

nation to navigate safely but also offer a robust alternative

in the event of hardware failure for robots with specialized

communication devices.

Leveraging implicit communication for distributed mul-

tiagent coordination using general-purpose mobile robots

poses a number of challenges. For instance, in contrast to

humans who employ a variety of modalities, most mobile

robots can only employ modalities related to the motion of

their base, such as path shape, speed, and acceleration; this

limits the abilities of robots for generating expressive sig-

nals. Further, coordination among multiple agents in a

bounded environment requires a model of the motion con-

straints formed among them. Finally, in the absence of

explicit communication and the limited implicit communi-

cation modalities available, the burden for coordination is

placed on the planning framework which also needs to

account for the uncertainty inherent in multiagent domains.

To address these challenges, in this article, we introduce

a mathematical formalism that explicitly models coordina-

tion across a group of multiple navigating agents using

tools from low-dimensional topology. This formalism

allows us to enumerate possible coordination protocols in a

symbolic fashion, enabling a robot to anticipate alternative

likely futures. Furthermore, we introduce a framework that

may generate Cartesian trajectory primitives corresponding

to desired coordination protocols using tools from compu-

tational physics (Berger, 2001a). We use this framework to

design a decentralized navigation algorithm which uses the

generation of coordination primitives as a tool to couple

inference and control. This enables an ego-agent to antici-

pate the effects of its own actions on other agents and

select a navigation strategy that complies with their inten-

tions while making progress towards its destination.

In summary, we contribute: (1) a novel topological form-

alism that allows us to represent, enumerate and classify

distinct multiagent trajectory alternatives as symbols with

analytical descriptions; (2) a centralized physics-inspired

mechanism, entitled Hamiltonian Coordination Primitives

(HCP) that generates coordinated multiagent motion, driv-

ing a set of agents from a starting configuration to a goal

configuration, while satisfying topological trajectory con-

straints; (3) HCPnav, an online, decentralized, reactive

navigation planning algorithm that makes use of HCP as a

mechanism for simultaneous prediction and generation of

motion in a multiagent navigation domain; (4) empirical

results, demonstrating the effectiveness of the HCP frame-

work in generating multiagent trajectories of desired topo-

logical specifications across a variety of scenarios and

settings; (5) empirical results, demonstrating the efficacy of

HCPnav in handling a variety of experimental conditions

including varying numbers of agents, heterogeneity, and

environments of different geometries.

This article extends and complements our WAFR’18

conference paper (Mavrogiannis and Knepper, 2020a) by

incorporating: (a) an extended review of the literature cov-

ering relevant works from the interfacing areas of multia-

gent simulation, social robot navigation, trajectory

prediction, along with a note on the benefits of topological

methods and representations for robot motion planning; (b)

an extended discussion describing how this framework

relates to past work on topological representations and

planners for multi-agent navigation; (c) a mechanism for

enabling the trajectory predictions to respect workspace

boundaries of known geometry; (d) a more detailed evalua-

tion of our trajectory-optimization pipeline (HCP) includ-

ing a detailed description of the CHOMP baseline and an

extensive presentation of qualitative results; (e) an extended

simulated evaluation of our planning algorithm (HCPnav)

in scenarios involving environments with complex geome-

try and agents with changing intentions.

2. Related work

From the human paradigm inspiration to the use of topolo-

gical tools for symbolic inference and trajectory generation,

our approach interfaces with a number of distinct research

communities. We review relevant literature from the fields

of multiagent simulation, social robot navigation, trajectory

prediction, and topological methods for robotics

applications.

2.1. Multiagent simulation

The problem of simulating smooth, collision-free, multia-

gent navigation scenarios has been central in a number of

applications, ranging from city planning to the study of

evacuation scenarios, computer game design, and robot

navigation.

This area is dominated by physics-inspired models, that

is, models based on the principles of particle attraction and

repulsion: attractive artificial potential fields drive agents to

their destinations whereas repulsive ones drive them away

from others. The social force model (Helbing and Molnár,

1995) has been one of the first and most influential

approaches, whereas several works have employed similar

models with additional considerations such as discomfort

fields (Treuille et al., 2006), local predictive processes

(Hoogendoorn and Bovy, 2003; Karamouzas et al., 2009),

time-to-collision heuristics (Davis et al., 2020), and cogni-

tive heuristics (Farina et al., 2017; Moussaı̈d et al., 2011;

Warren, 2006). Some works have employed data-driven

techniques to learn the parameters of human navigation in
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different contexts from simulated (Henry et al., 2010) or

real-world demonstrations (Karamouzas et al., 2014).

Another prevalent planning paradigm is based on the

concept of velocity obstacles (Fiorini and Shiller, 1998),

that is, regions in the velocity space of the planning agent

that would result in imminent collision, under some

assumed motion model of other agents. The Optimal

Reciprocal Collision Avoidance (ORCA) framework (van

den Berg et al., 2009) and its variants (Alonso-Mora et al.,

2012; Snape et al., 2011) are based on the principle of

determining efficient robot velocities that avoid the velo-

city obstacles, typically under the strict assumption that

others follow the exactly the same strategy.

Existing physics-inspired approaches reinforce collision

avoidance as an emergent property of repeated repulsive

and attractive motions between agents. This mechanism is

purely local in nature, often resulting in inefficient, oscilla-

tory multiagent behaviors: agents myopically react to the

local motion of each other without reasoning about the

internal decision-making processes of each other. Our

framework is also physics-inspired, as we borrow our main

model (a point vortex) from fluid dynamics. However, our

approach incorporates an inference mechanism that expli-

citly reasons over coordination strategies within an agent’s

decision-making process. This enables agents to ground

local individual motion to global multiagent navigation

strategies. This allows for smoother adaptation to the inten-

tions of each other, reflected in the more efficient and safe

behaviors that our agents follow.

Existing velocity-obstacle-based approaches may guar-

antee collision avoidance up to a limited time horizon by

explicitly exploiting the bidirectional symmetry that all

agents run the same exact policy knowing that they do so

(van den Berg et al., 2009). In contrast, although our

HCPnav framework assumes that agents are cooperative, it

does not explicitly place any constraints on their decision-

making. HCPnav employs HCP to generate valid trajectory

representatives of global multiagent coordination strategies.

The longer horizon results in proactive adaptation that

enables time-efficient and safer behavior (see Section 6).

2.2. Social robot navigation

Driven by the goal of deploying robots in crowded human

environments such as pedestrian scenes, researchers have

proposed multiagent navigation frameworks incorporating

social considerations (Mavrogiannis et al., 2021).

A number of works focus on socially aware robot navi-

gation. For instance, Park et al. (2012) designed a model

predictive control (MPC) framework aiming at generating

smooth collision-avoidance maneuvers in crowded environ-

ments. Luber et al. (2012) derived a set of dynamic naviga-

tion primitives from a human trajectory dataset and made

use of them for real-time trajectory prediction and genera-

tion. Some works (Shiomi et al., 2014; Truong and Ngo,

2017) employed the social force model (Helbing and

Molnár, 1995) and the reciprocal velocity obstacle model

(van den Berg et al., 2009) as predictive processes to

account for the generation of humanlike and socially aware

collision-avoidance behaviors.

Inspired by the cooperative nature of human navigation

(Wolfinger, 1995), in recent years researchers have pro-

posed frameworks that leverage cooperation among agents

to facilitate collision avoidance. For instance, Knepper and

Rus (2012) proposed a sampling-based motion planner that

leverages a model of the human mechanism of civil inatten-

tion (Goffman, 1966) to reinforce commitment to mutually

beneficial collision-avoidance strategies. Kretzschmar et al.

(2016) learned a model of human cooperative navigation

behavior using inverse reinforcement learning (IRL). Chen

et al. (2017) and Kim and Pineau (2016) learned models

that engineer cooperation by reproducing selected social

norms such as passing from the right-hand side and over-

taking on the left. Lo et al. (2019) modeled collision avoid-

ance as a stochastic game, and guaranteed safety under

different models of human pedestrian decision making.

From a similar perspective, Turnwald and Wollherr (2019)

proposed a game-theoretic framework for humanlike

motion generation that approximates the process of colli-

sion avoidance as a Nash equilibrium in a non-cooperative,

static game.

Our approach is also cooperative in nature, but unlike

the majority of the literature, it employs a novel, explicit

model of cooperative collision avoidance. Our model repre-

sents multiagent coordination behaviors in a compact and

interpretable fashion that enables both symbolic, high-level

inference and geometric, low-level motion generation. The

proposed framework builds upon and extends our past

work on the use of explicit representations for multiagent

collision avoidance. Unlike our past work that reasons

about multiagent behaviors in a purely symbolic fashion

(Mavrogiannis et al., 2017; Mavrogiannis and Knepper,

2019, 2020b), this work introduces a flexible, gradient-

based trajectory optimization framework that bridges the

gap between symbolic reasoning and trajectory generation.

Our framework directly builds on our social momentum

(SM) planner (Mavrogiannis et al., 2018) which leverages

the heuristic of angular momentum to infer and comply

with unfolding pairwise collision-avoidance intentions. In

this work, we observe that the angular momentum is a heur-

istic that can enforce pairwise collision-avoidance maneu-

vers of desired topological signature. This topological

signature can be modeled using the topological invariant of

the winding number. Based on this insight, we leverage

work from mathematical physics (Berger, 2001a) to build a

machinery for generating braided multiagent trajectories of

desired winding numbers.

2.3. Trajectory prediction

Over recent years, considerable attention has been paid to

the problem of multiagent trajectory prediction, motivated

by modern applications ranging from people tracking to

autonomous driving, and social robot navigation. The
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prevailing paradigm involves the use of machine learning

techniques, typically recurrent neural networks (RNNs)

(Graves et al., 2013), employing features modeling interac-

tion across agents. For example, Alahi et al. (2016) intro-

duced a social pooling layer that enables a long short-term

memory (LSTM) (Hochreiter and Schmidhuber, 1997)

architecture to model interaction between neighboring

agents. Vemula et al. (2018) incorporated a notion of atten-

tion to enable their RNN to perceive the relative impor-

tance of neighboring agents when predicting interacting

behaviors. In our past work (Mavrogiannis et al., 2017), we

employed braid groups (Birman, 1975) to encode interac-

tion among neighboring agents as a sequence of symbols

and capture the qualitative traits of interaction.

The increased complexity of multiagent behavior predic-

tion has motivated a line of work that explicitly models

multimodality. For instance, Gupta et al. (2018) employed

generative adversarial networks (Good fellow et al., 2014)

to generate diverse predictions in a pedestrian scene.

Schmerling et al. (2018) employed a conditional variational

autoencoder (CVAE) to generate multimodal predictions

for lane-changing scenarios involving human and robot-

driven vehicles. Tang and Salakhutdinov (2019) employed

a RNN model to learn multimodal multiagent trajectory

predictions across a variety of driving scenarios in an unsu-

pervised fashion. The technique of generating multimodal

predictions for planning problems is not new; for instance,

Mainprice and Berenson (2013) incorporated multiple

human motion predictions to plan collision-free robot

motion in collaborative manipulation scenarios. In fact, the

origins of this idea be traced at least as far back as the

development of the MPC paradigm (Garcı́a et al., 1989), in

which the controller iteratively evaluates the quality of a set

of candidate control rollouts by passing them through a

dynamic model, a cost function, and a series of constraints.

In a sense, the recent literature provides a more context-

aligned perspective on determining valid candidate rollouts.

Although our work does not belong to the trajectory

prediction literature, we propose a computational machin-

ery that: (a) generates multiagent trajectory primitives of

desired interaction patterns; (b) inherently models multi-

modality in a compact and interpretable fashion using tools

from topology. Our proposed multiagent trajectory primi-

tive generation pipeline could be adapted to encode data-

driven bias to match desired contexts.

2.4. Topological methods for motion planning

One of the major ongoing threads in robotics these days

focuses on bridging the gap between low-level robot skills

and high-level, symbolic abstractions towards improving

system interpretability and facilitating access to non-expert

users. One of the prevailing approaches to this problem is

through the use of topological methods, which have

recently been employed to a wide variety of planning

problems.

One of the prevalent use cases for topological methods

in robotics involves the identification of qualitatively dis-

tinct planning alternatives in cluttered environments. For

instance, Knepper et al. (2012) proposed a homotopy-like

equivalence relation among paths. Based on this relation,

they described an algorithm that reduces the time spent on

collision checking by leveraging the topological similarity

between locally available paths and previously collision-

checked paths. The virtues of this approach are also trans-

ferable to sampling-based motion planning: leveraging

topological equivalence may help bias sampling towards

regions with higher potential for collision-test survival

(Knepper and Mason, 2012). From a similar perspective,

Denny et al. (2020) biased sampling-based motion planning

algorithms towards unexplored regions using a graph struc-

ture modeling the underlying topology of the free space in

a cluttered environment. Denny et al. (2018), using a Reeb-

graph abstraction of the robot’s configuration space, con-

structed a metric that approximates the homotopic similar-

ity between paths and demonstrate its value for homotopy-

aware sampling-based motion planning. Pokorny and

Kragic (2015); Pokorny et al. (2016) employed persistent

cohomology and persistent homology techniques, respec-

tively, as tools for satisfying topological constraints in

sampling-based motion planning over high-dimensional

configuration spaces. Bhattacharya et al. (2012) incorpo-

rated topological constraints into graph-search-based

motion planning using homology as a tool. Finally, Orthey

et al. (2020) introduced the fiber-bundle abstraction to for-

malize and tackle multilevel motion planning problems

involving multiple degrees of freedom (DoFs), and employ

tools from Morse theory to visualize local minima (Orthey

and Toussaint, 2020).

A series of works have focused on problems involving

multiple agents in static or dynamic environments. For

instance, Rösmann et al. (2017) incorporated a homology-

based model into a trajectory-optimization framework to

generate topologically distinct trajectory alternatives.

Although similar in principle to our framework, their

approach treats other agents as moving obstacles without

modeling their dynamics or accounting for any interaction

phenomena between them. In contrast, Cao et al. (2019)

incorporated global homotopy reasoning into a graph-

search based approach to determine safe passages in

dynamic environments with human crowds. Further,

Kretzschmar et al. (2016) modeled human passing prefer-

ences as distinct homotopy classes and used them as part

of a feature space used to learn a reward function represent-

ing human navigation. Diaz-Mercado and Egerstedt (2017)

employed topological braids (Birman, 1975) to maximize

coverage in multirobot navigation problems. In a similar

domain, Denny and Fine (2020) employed Reeb graphs as

models of the topological structure of the workspace to

maximize the throughput of a multiagent group within a

partially known environment. Hu et al. (2003) used braids

as prototypes of multirobot collision-avoidance maneuvers

to determine low-energy conflict resolutions among
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multiple coordinating agents navigating on a plane. Our

past work (Mavrogiannis et al., 2017; Mavrogiannis and

Knepper, 2019, 2020b) made use of topological braids as

symbols describing topological events corresponding to

distinct collision-avoidance maneuvers in multiagent navi-

gation domains. Using a probability distribution over

braids, our past works have employed rule-based planners

to guide agents towards paths of decreased uncertainty.

The approach presented in this article is unique in that it

incorporates topological specifications in a trajectory opti-

mization framework for dynamic multiagent environments.

Unlike our past work that reasons about topological out-

comes at a purely symbolic level, this article ties symbolic

reasoning with a trajectory generation mechanism based on

the topological invariant of the winding number. This

mechanism serves as a generator of multiagent coordina-

tion primitives that are used as rollouts for a cost-based

motion planner. We illustrate the value of our optimization

framework across a series of challenging decentralized

multiagent navigation problems.

2.5. Relation to past work

Multiagent navigation of rational agents in a bounded envi-

ronment has an interesting property: agents’ decision mak-

ing is spatiotemporally coupled as they cannot occupy the

same configuration at the same time; thus, they need to

reach a state of consensus with others over a joint naviga-

tion strategy in order to avoid collisions and reach their

destinations efficiently. This property may be traced at the

entanglement of agents’ trajectories throughout the execu-

tion of a multiagent scene. Agents’ trajectories may be

thought of as strings that become knitted around each other,

according to agents’ navigation strategies. This knitting has

topological properties which can be studied with tools from

low-dimensional topology, the field of topology focusing

on topological spaces of four or fewer dimensions.

A thesis of our work (Mavrogiannis, 2019) is that under-

standing the topological structure that underlies multiagent

collision avoidance in navigation may enable artificial

agents to coordinate efficiently to avoid each other, navi-

gate in a socially compliant fashion next to each other, and

even adapt robustly to the (potentially adversarial) beha-

viors of heterogeneous others. Overall, we argue that topo-

logical representations can offer significant benefits to

modeling, perception and planning problems in robotics,

including a greater potential for generalizability across

diverse domains, and inherent model explainability through

the introduction of rigorously derived symbolic reasoning.

This observation has motivated us to seek computational

tools to leverage the powerful abstraction capabilities of

topology in problems of multiagent robot navigation. Our

exploration started with the use of topological braids

(Birman, 1975) as symbols representing joint strategies of

collision avoidance (Mavrogiannis and Knepper, 2020b).

The representation of braids allowed us to build a mechan-

ism for inferring future collective behaviors of multiple

agents from observations of their past trajectories.

Incorporating such a mechanism into the planning process

of non-communicating agents was shown to result in accel-

erated uncertainty reduction in discrete domains under

challenging scenarios (Mavrogiannis and Knepper, 2019).

A data-driven approximation of this mechanism from a

dataset of trajectories extracted from simulated multiagent

scenarios (Mavrogiannis et al., 2017) was shown to extend

these findings to continuous domains. Figure 1(a) demon-

strates the inference process employed in the outlined plan-

ning architecture.

In the previous works, topology was abstractly

accounted for in the design of the inference mechanism.

The planning agent was reasoning about the topology in a

purely symbolic and discrete fashion, being essentially

agnostic to the potential geometric implications from the

transfer of a topological symbol to a real-world behavior.

In real-world environments, it is important for a robot to

understand the geometric effects of its actions on the col-

lective system dynamics. This motivated us to seek the

foundational machinery underlying the generation of a spa-

tiotemporally braided multiagent trajectory pattern. First,

we observed that the vector of angular momentum for a

(a)

(b)

(c)

Fig. 1. Three generations of symbolic inference for multiagent

navigation using topological abstractions of coupled interactions.

(a) Inferring topological braids (Mavrogiannis et al., 2017;

Mavrogiannis and Knepper, 2019, 2020b). (b) Inferring pairwise

collision-avoidance intentions (Mavrogiannis et al., 2018). (c)

Inferring coordination primitives (Mavrogiannis and Knepper,

2020a).
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pair of agents that avoid a collision with each other

describes their passing side intention and developed social

momentum (Mavrogiannis et al., 2018), a framework that

enables a navigating agent to make decisions towards max-

imal compliance with others in a crowded pedestrian scene,

under the assumption that everyone is acting rationally.

Figure 1(b) describes the inference process involved in

framework.

However, in many situations, this is not the case, and it

is often important for a robot to have access to alternative

classes of behavior to ensure smooth and timely adaptation

to potentially unexpected events or even adversarial beha-

viors of others. This motivated us to move a step further

and build a mechanism for transitioning from symbols rep-

resenting classes of multiagent behavior to Cartesian mul-

tiagent trajectory primitives (Mavrogiannis and Knepper,

2020a). This allows an agent to visualize a set of candidate

futures and evaluate their second-order properties, such as

their feasibility, likelihood, efficiency, and social compli-

ance, before committing to one of them. In this article, we

expand on this latter method, providing a deeper analysis

and incorporating additional simulated evaluations. In con-

trast to the previous two main frameworks that focused on

the aspects of coordination and compliance, respectively,

this one targets the aspect of robustness. The inference pro-

cess employed in this planner is outlined in Figure 1(c).

2.6. Contributions

In summary, we make the following contributions.

� A novel formalism of dual algebraic and geometric

nature that describes the topological relationships

formed across a set of trajectories in space and time.

This formalism is based on the topological invariant of

the winding number and can be extensible to any num-

ber of agents.
� A novel framework for multiagent trajectory generation

that follows desired topological specifications. Our

framework (HCP) leverages the method of Berger

(2001a) for braiding two-particle trajectories into

desired topological patterns across space and time.
� An extensive evaluation illustrating the ability of HCP

to generate desired multiagent trajectories of desired

topological specifications across a variety of challen-

ging scenarios involving up to five agents. We show

that a non-optimized implementation of our framework

outperforms a baseline based on the framework of

Zucker et al. (2013) in terms of topology enforcement

and time efficiency.
� An online, cost-based planner (HCPnav) that leverages

our trajectory generation framework, HCP, as a

mechanism for the generation of valid primitives of

coordination for cooperative collision-avoidance sce-

narios. Generating multiple alternative multiagent

futures offers the potential of adaptation to unexpected

events such as the emergence of heterogeneous agents

or agents with changing intentions.
� An extensive simulated evaluation illustrating the abil-

ity of HCPnav to handle a series of challenging scenar-

ios in environments of different geometries involving

up to four agents under homogeneous and heteroge-

neous settings. HCPnav achieves performance compa-

rable to ORCA (van den Berg et al., 2009), a widely

employed algorithm for multiagent simulation. This

performance illustrates the value of HCP as a mechan-

ism for prediction in decentralized navigation scenar-

ios. HCP could be incorporated within a variety of

modern control and planning frameworks including

MPC (Garcı́a et al., 1989) or reinforcement learning

(Sutton and Barto, 2018).

3. Problem statement

Consider a set of n.1 holonomic agents, lying at config-

urations xi 2 X , i 2 N = f1, . . . , ng in a planar workspace

X � R
2. Agent i starts from some initial configuration

si 2 X and heads towards a destination di, i 2 N by execut-

ing a policy pi : X ! U i, generating actions ui 2 U i � R
2,

satisfying a specification of the form:

ui = argmin
ui2U i

wiCd(ui)+ (1� wi)Cc(ui) ð1Þ

where Cd : U i ! Rø 0 represents the distance cost-to-go

and Cc : U i ! Rø 0 the collision cost of taking an action in

consideration ui, whereas wi 2 (0, 1) is a weight describing

agent i’s personal compromise over the two costs. Agent i is

not aware of the destination dj of agent j 6¼ i 2 N but

assumes that any agent j 6¼ i 2 N is rational, in the sense

that they also optimize for some compromise wj between

Cd and Cc. Our goal is to design a decentralized policy pi

to enable an agent i navigating under the described settings

to follow a time-efficient, smooth and collision-free path.

4. HCP

Towards the goal of Section 3, in this article we contribute

a novel paradigm for multiagent collision avoidance under

cooperative settings (Section 3). We introduce the notion of

coordination primitives as multiagent trajectory prototypes

incorporating the property of rationality in the sense of a

shared responsibility for collision avoidance across agents.

In this section, we present a novel framework for generat-

ing coordination primitives in multiagent domains. Our

framework HCP models pairs of interacting agents as

Hamiltonian dynamical systems whose evolution follows a

desired topological specification. The proposed approach is

inspired by the point vortex problem (Aref, 2007) from

fluid dynamics and leverages the method of Berger

(2001a,b) for generating braided trajectories of multiparti-

cle systems from topological invariants (Berger, 2001b). In

the following subsections, we introduce preliminaries on
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point vortex flows, review the method of Berger (2001a)

and describe how we use it to generate HCPs.

4.1. Hamiltonian systems

Consider a system with m DoFs lying at a state described

by a set of generalized coordinates qj 2 R and conjugate

momenta pj 2 R, j 2 M = f1, . . . ,mg. Under the

Hamiltonian formalism, the state of the system is captured

into an energy function H(qj, pj, t), j 2 M , possibly depen-

dent on time t, called the Hamiltonian (sum of kinetic and

potential energy over all DoFs of the system). Hamilton’s

equations relate the evolution of the Hamiltonian to the

evolution of the system state as follows:

_qj =
∂H

∂pj

, _pj = �
∂H

∂qj

, j 2 M ð2Þ

where (_) indicates a time derivative. A dynamical system

whose evolution is described by Hamilton’s equations (2) is

called a Hamiltonian system.

Combining the state of the j th DoF into a complex vari-

able zj = qj + ipj, j 2 M , we construct an analytic function

F(z1, . . . , zm)= C(z1, . . . , zm)+ iH(z1, . . . , zm) ð3Þ

where C : Cm ! R and H : Cm ! R is the Hamiltonian

of the system assuming _H = 0 (i.e., the Hamiltonian is con-

served). Berger (2001a) showed for this type of function,

the Hamiltonian flow (2) results in motion _zj,

j 2 N = f1, . . . , ng, that follows the Wirtinger derivative

(Gunning and Rossi, 1965; Kaup et al., 1983) of C with

respect to zj. Therefore, the collective Hamiltonian motion

of all DoFs follows the direction of maximum increase of

C. Leveraging this construction, Berger (2001a) generated

multiparticle trajectories of desired topological specifica-

tions by setting C to be a topological invariant (Berger,

2001b), i.e., a function mapping the topological properties

of the system flow to a real number. In the following sec-

tions, we build upon this method to generate braided mul-

tiagent trajectories using a topological invariant called the

winding number.

4.2. The Winding Number

Consider a closed curve g : ½0, T � ! Cnf0g with

g(0)= g(T ) and define a function:

l(t)=
1

2pi

I
g

dz

z
ð4Þ

where z = g(t), t 2 ½0, T �. We can express g in polar coor-

dinates as g(t)= r(t)eiu(t), where r(t)= k g(t) k and

u(t)=\g(t). Using the Cauchy integral formula, we can

decompose (4) into the sum

l(t)=
1

2pi

Z t

0

_r

r
dt0+

1

2p

Z t

0

_udt0 ð5Þ

yielding

l(t)=
1

2pi
log

r(t)

r(0)

� �
+

1

2p
(u(t)� u(0)) ð6Þ

The real part of this integral,

w = Re(l(t))=
1

2p
(u(t)� u(0)) ð7Þ

is a topological invariant, counting the number of times

the curve g encircled the origin in the time interval ½0, t�.
Intuitively, any continuous curves that encircle the origin

the same number of times are mapped to the same winding

number value. Taken across the whole curve g from t = 0

to t = T , the imaginary part is equal to zero and thus the

complex function degenerates to l(t)= w because the

curve is closed, i.e., r(0)= r(T ).
By construction, the function l fits the general form of

function F from Section 4.1 because it can be expressed as

a function over z = g(t) 2 C. Thus, as discussed in Section

4.1, if we carefully set its imaginary part to a Hamiltonian

function describing a dynamical system, the evolution of

the system would maximize the growth of the real part, the

winding number over the curve g. As described by Berger

(2001a), the imaginary part of the function l indeed corre-

sponds to the Hamiltonian function for a particular dynami-

cal system: a point vortex.

4.3. Two-particle vortex motion

In fluid mechanics, a two-dimensional point vortex (Aref,

2007; Nitsche, 2006) represents an entity that induces rota-

tional motion around an axis. It is typically described by a

quantity called vorticity, measuring the rate of local fluid

rotation. Consider two point vortices placed at positions

a = (ax, ay) 2 R
2 and b = (bx, by) 2 R

2. We define a com-

plex function gab : ½0, T � ! C to track the relative motion

of the two vortices by setting gab(t)= rab(t)e
iuab(t), where

rab = k a� b k and uab(t)=\gab(t). Assuming equal, unit

vorticity, we can write the Hamiltonian for the system of

vortices as

H = � 1

2p
log rab ð8Þ

The equations of motion can be derived as

( _ax, _ay) = ∂H
∂ay

, � ∂H
∂ax

� �
= 1

2p
� ay�by

r2
ab

, ax�bx

r2
ab

� � ð9Þ

( _bx, _by) = ∂H
∂by

, � ∂H
∂bx

� �
= 1

2p
� by�ay

r2
ab

, bx�ax

r2
ab

� � ð10Þ

The two vortices rotate about each other at a constant

radius in a counterclockwise direction. We may control the
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directionality of the rotation by switching the signs in the

right-hand side of (9) and (10).

Similarly to Section 4.2, we define a complex function

lab as

lab(t)=
1

2pi
log (rab)+

1

2p
(uab(t)� uab(0)) ð11Þ

The real part

wab(t)= Re(lab(t))=
1

2p
(uab(t)� uab(0)) ð12Þ

corresponds to the pairwise winding number of the two

curves, counting the number of times the two vortices have

rotated about each other (see Figure 2 for a graphic repre-

sentation of the pairwise winding number). We remark that

Im(lab)= H and, therefore, according to Section 4.1, the

Hamiltonian flow for this system maximizes the growth of

the real part, i.e., the corresponding winding number

Re(lab)= wab.

4.3.1. Cooperative collision avoidance as two-particle vor-

tex motion. In this article, we propose to leverage outlined

two-particle vortex dynamics to generate cooperative

collision-avoidance maneuvers. Hamilton’s equations (9)

and (10) describe dynamics corresponding to control laws

that can be used to generate coordinated collision-

avoidance motion primitives for two agents. In particular,

given a desired direction of collision avoidance, expressed

in the sign of the winding number wab (sign(wab).0

denotes right-hand side collision avoidance and vice versa),

by multiplying the right-hand sides of (9) and (10), we

recover control laws that yield coordinated trajectories for

a and b along the direction indicated by sign(wab).
Under the assumption of rationality, as outlined in

Section 3, the motion primitives produced by following the

outlined control laws may serve as a prediction mechanism,

valuable for simultaneous inference and planning in

cooperative multiagent domains. For instance, in a hallway

scenario where two agents attempt to converge on a passing

side, the proposed mechanism could allow an agent to

anticipate and adapt to either outcome or even attempt to

enforce its own preference in uncertain situations. In the

following section, we detail the outlined idea and describe

how it can be adapted to domains with n ø 2 agents.

4.4. Generating HCPs

Consider the problem of driving n agents from a set of ini-

tial configurations S = (s1, . . . , sn) 2 R
2n to a set of desti-

nations D = (d1, . . . , dn) 2 R
2n in a collision-free fashion,

while satisfying pairwise passing-side specifications as

described in a vector w= w12,w13, . . . ,ð Þ 2 W. Assuming

that each agent passes each other exactly once on its way

to its destination (agents do not loop around others), the

magnitude of wij, i 6¼ j 2 N , is not important; thus, in the

remainder of the article, we abuse the notation of wij to

denote sign(wij). The cardinality of the set of possible spec-

ifications is jWj= 2
n
2

� �
, corresponding to all possible

combinations of passing sides for all agents. It should be

noted that although all combinations in W are topologi-

cally possible, in practice, only a subset of them are mean-

ingful and likely given agents’ state history and under the

assumption of rationality. Section 5 addresses the problem

of evaluating the likelihood and the feasibility of a topolo-

gical specification.

We now describe a policy pi : R2n ×W ! R
2n that can

be sequentially iterated across all agents to produce a mul-

tiagent trajectory that satisfies a topological specification

w. The policy leverages Hamilton’s equations as described

in Section 4.3.1, and we refer to it as HCP. HCP prescribes

an action ui 2 R
2 to every agent i 2 N , synthesized from a

weighted consideration of all pairwise collision-avoidance

reactions between the agent and all others, towards meeting

the pairwise specifications contained in w:

ui = ni � k ui
att + ui

rep

� �
ð13Þ

where ni 2 R (m=sec) is an agent’s desired speed, ui
att, ui

rep

are actions (velocity vectors in meters per second) attracting

the agent towards its destination and repulsing it from oth-

ers, respectively, and k 2 R (seconds per meter) is a scaling

parameter. The action

ui
att = katt(di � qi) ð14Þ

attracts the agent from its current state qi towards its desti-

nation di according to an importance weight katt 2 R (per

second). The action

ui
rep = krep

XN

j 6¼i

cijwijv
i
j ð15Þ

Fig. 2. Spacetime plot of the trajectories of two agents,

navigating in a circular workspace (left) and projection of their

trajectories until time t1, onto the xy plane, along with the

definition of their pairwise winding angle and winding number

(right).
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repulses agent i from each other agent j 2 N , j 6¼ i, through

the velocity vi
j (m=sec), derived from (9) and (10), with a

degree of consideration equivalent to the criticality
1

of their

pairwise collision avoidance, expressed by the unitless

cij 2 R (the closer two agents are, the more critical their

avoidance becomes) and along the direction indicated by

wij whereas krep 2 R is a unitless importance weight. The

choice of the weighting factors katt, krep expresses the rela-

tive significance between goal attraction and collision

avoidance, whereas the criticality term is a function of the

distance between agents i and j. By sequentially executing

the outlined policy, in parallel for all agents, in equal time

steps of length dt, the system of agents is forced to follow

the specification w. The policy is executed repeatedly until

all agents reach their destinations. Note that this method

does not guarantee that the desired topology will be

achieved. Depending on the number of agents, their initial

configurations and intended destinations, the criticality

model and importance parameters, it may be challenging to

balance collision-avoidance directionality with goal reach-

ing. However, we empirically observe desirable perfor-

mance at a low computational cost in a case study

exploring scenarios with different numbers of agents (see

Section 6).

5. Decentralized navigation with HCP

In this section, we describe a decentralized algorithm that

leverages the HCP framework as a prediction mechanism

to tackle the navigation problem posed in Section 3. Our

algorithm is essentially a cost-based planner operating on

HCPs. The algorithm comprises the following sequence of

actions: (1) predict the destinations of other agents; (2)

generate a set of candidate multiagent trajectories that

drive agents from their current locations to their predicted

destinations; (3) evaluate candidates with respect to a cost

function; (4) execute the next action assigned to the plan-

ning agent from the lowest-cost candidate. In the following

subsections, we describe the main components of the algo-

rithm and provide a detailed presentation of it in pseudo-

code format (see Algorithm 1).

5.1. Destination prediction

In Section 4.4, it was assumed that the planning policy has

access to the destinations of other agents. In the settings we

are considering (see problem posed in Section 3), no expli-

cit communication takes place among agents, and therefore

agents are not aware of each other’s destinations. Thus, a

planning agent needs to make a prediction about the desti-

nations of others in order to use the HCPs framework as a

prediction mechanism. However, in practice, an agent only

interacts with others for as long as they lie within its sen-

sing range, which for current robotic systems is quite lim-

ited. During this amount of time, other agents’ observed

behaviors may or may not be revealing about their specific

destination. In fact, detailed predictions of agents’ destina-

tions may not be sufficiently informative regarding agents’

future behaviors; in crowded environments, the collision-

avoidance process is a more significant influence over

agents’ behaviors. For this reason, we take a more practical

approach, focusing on coarse predictions of agents’ future

locations. Alternative methods of filtering could be

employed to provide more accurate destination prediction;

however, this is not our focus in this article and, as will be

shown in Section 6, this simplified model may yield the

desired performance.

In particular, we assume that an agent’s sensing range

has the shape of a disk of radius R, centered at the agent’s

position, qi. Any agent lying outside of this disk is not per-

ceived by the agent whereas any agents lying behind the

robot are ignored at the planning stage. For each one of the

perceived and actively considered agents, we approximate

their intended direction of motion by fitting a line to their

recent, observed trajectory and projecting their current

velocity on it. We then propagate their current speed along

this direction until it intersects the boundary of the sensing

disk. For our planning algorithm, that point of intersection

is considered to be that agent’s destination (see Figure 3).

This prediction is expected to be a coarse approximation of

where an agent is heading. However, because our algorithm

runs in replanning cycles, this approximation provides a

sufficient amount of detail for the HCP prediction mechan-

ism. This mechanism makes use of the assumption that

agents act rationally, that is, agents’ behaviors are driven

by an incentive of making collision-free progress towards

their destinations.

Algorithm 1 HCPnav(q, d,X)

Input: map, representation of the workspace boundary; q,
agent’s current state; d, agent’s intended destination; Xpast, state
history of all agents; K, number of outcomes to consider; e,
desired distance-to-goal threshold.
1: AtGoal False
2: while :AtGoal do
3: R  Get Reactive Agents(Xpast)
4: D Predict Destinations(Xpast,R)
5: W  Get Outcomes(R)
6: P Get Outcome Probability(W,Xpast)
7: WK  Get BestOutcomes(P,W, K)
8: Z  ;
9: for all w 2 WK do

10: Xpred  HCP(Xpast,w, D)
11: Z  fZ,Xpredg
12: end for
13: C  Score Trajectories(Z)
14: u Get Best NextAction(Z, C)
15: q Execute Action(u)
16: if jjq� djj\e then
17: AtGoal True
18: end if
19: end while
20: return None
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5.2. Outcome evaluation

The set W contains symbolic representations of topologi-

cally distinct outcomes for the system of all considered

agents. Naturally, a significant question that arises is: which

outcome should the planning agent trust and follow? We

approach this problem with the following sequence of com-

putations: (1) we first evaluate an outcome with respect to

its likelihood; (2) we then generate trajectory representa-

tions for the set of the K most likely outcomes WK � W,

using the policy presented in Section 4.4; (3) finally, we

evaluate these K best outcomes with respect to the physical

properties of their trajectory representations.

5.2.1. Probability of an outcome. An outcome is initially

encoded symbolically as a tuple w that prescribes how agents

avoid each other throughout the course of the scene. From a

topological perspective, these symbols are independent of

each other; any motion is allowed even if it is not efficient.

However, from a real-world point of view, the collision-

avoidance strategies that agents employ to avoid one another

are coupled and modeling the complex probabilistic relation-

ships among them is a challenging problem. For our pur-

poses in this article, we are interested in finding a way to

bias our search towards the outcomes that are more likely to

occur. We do so by using the following expression:

P(wjXpast)= P(w12,w13, . . . jXpast)

}
1

Z

Y
ij

P(wijjXpast)
ð16Þ

where Xpast denotes agents’ past trajectories and Z is a nor-

malization constant across all w 2 W. This expression was

derived by factorizing P(w12, . . . jXpast) using the product

rule and then substituting each factor with its Bayes’ rule

expression. Drawing from our past work (Mavrogiannis

and Knepper, 2019), we model P(wijjXpast) by employing

the physical quantity of angular momentum. For two agents

i, j, navigating on a plane, their angular momentum Lij lies

along the z axis. Note that the sign of the z component of

the momentum, Lij
z is an indicator of agents’ passing side

and thus of the winding number of their trajectories wij,

with Lij
z .0 indicating the emergence of wij.0 (right-hand

side collision avoidance) and Lij
z \0 indicating the emer-

gence of wij\0 (left hand side collision avoidance). We

incorporate the momentum as a heuristic in a sigmoid

model as follows:

P(wijjXpast)=
1

1 + exp (� wijklL
ij
z )

ð17Þ

where kl 2 R (meters squared per second) is a normaliza-

tion constant making the argument of the exponential

dimensionless. The greater jLij
z j is, the greater the mutual

intention or preference of agents i and j over a collision

avoidance along the direction of Lij is.

5.2.2 Trajectory quality. We evaluate a trajectory represen-

tation Xw of an outcome w by computing its total energy

E : Zn ! R, its required immediate acceleration

A : Zn ! R and its safety cost S : Zn ! R. The energy

measure (sum of squared speeds throughout the trajectory)

gives an estimate of the efficiency of an outcome whereas

the acceleration measure is indicative of the aggressiveness

of the maneuvers required to comply with an outcome. We

model the safety cost as S(X)= exp (� kddmin), where

dmin 2 R is the minimum distance between any pair of

agents in a trajectory X, and kd 2 R (per meter) is a nor-

malization constant making the argument of the exponen-

tial dimensionless. Note that other cost functions could be

used to incorporate different considerations such as social

comfort (see, for example, Sisbot et al., 2007).

5.3. Decision making

We first rank outcomes at a symbolic level through the use

of the probability distribution, presented in Section 5.2 and

determine the set of the K most likely outcomesWK . Then,

we determine the outcome of lowest cost:

C(X)= aeE+ aaA+ asS ð18Þ

where ae, aa, and as are importance weights and, finally,

extract the optimal outcome through the following optimi-

zation scheme:

w�= arg min
w2WK

C(Xw) ð19Þ

The planning agent executes the next action assigned to

it from the trajectory of lowest cost Xw� . Figure 4 depicts a

graphic representation of the planning scheme.

Fig. 3. The destination prediction mechanism. The red agent

makes destination predictions for all agents, lying within its

circular sensing disk, and in front of it.
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5.4. Conforming to workspace boundary

The technique described in Section 4.4 does not take into

consideration workspace boundary constraints. We account

for them at execution time by projecting the planning

agent’s selected velocity onto the boundary, along the direc-

tion of maximum progress to goal. Figure 5 depicts an

example of the mechanism. The agent has planned a velo-

city v0 which would drive it to a region that is too close to

the boundary (represented as the gray area). Instead, the

agent executes a velocity v, extracted by projecting v0 onto

the environment boundary, directing it toward the direction

of maximum increase to agent’s destination (here, to the

left) and keeping the same magnitude, that is,

k v k = k v0 k.

5.5. Pseudocode

Algorithm 1 summarizes the described algorithm, HCPnav,

in pseudocode format. The algorithm runs in replanning

cycles for as long as the Boolean variable AtGoal is set to

False, indicating that the agent has not reached its destina-

tion yet. At every cycle, the agent first determines a set of

reactive agents, that is, agents that lie within the robot’s

sensing disk and to the front of the robot’s heading (func-

tion Get_Reactive_Agents). Then, function

Predict_Destinations outputs predictions for the

destinations of the reactive agents and Get_Outcomes
returns a set of topological representations for outcomes

that could emerge in the remainder of the execution.

Function Get_Outcome_Probability returns the

probability for each of the outcomes considered and func-

tion Get_Best_Outcomes returns the K best outcomes.

Function HCP executes the HCP policy and generates tra-

jectory representations for these outcomes and function

Score_Trajectory evaluates them with respect to the

cost function considered. Finally, function

Get_Best_Next_Action returns the next action for

the planning agent from the trajectory of lowest cost and

function Execute_Action executes that action. The dis-

tance between the resulting agent state and its destination is

compared to the predefined threshold e and the flag

AtGoal is updated to True in case the agent is sufficiently

close to its destination.

5.6. Complexity and practical considerations

The most computationally intense component of our algo-

rithm is the estimation of the outcome probabilities. For n

agents, this computation runs in time O(2n2

); the remainder

of the computations run in polynomial time. In practice, a

replanning cycle of HCPnav on a scenario involving 4

agents and thus the evaluation of 64 topological classes

with K = 5, runs at an average of 42 ms, with the worst

case being 203 ms in a non-optimized Matlab implementa-

tion on a MacBook Pro of 2015 with an Intel Core i7 pro-

cessor of 2.5 GHz, running macOS High Sierra. Transfer

to a faster language and optimization of parts of the code

could help vastly improve performance.

Under the current design, scaling to large n is not possi-

ble. However, for a mobile robot application, we argue that

Fig. 4. Illustration of the planning scheme. At every replanning cycle, the planning agent generates a set of diverse (topologically

distinct) predictions about the joint future behavior of all agents, evaluates them with respect to a cost function C, and executes the

action assigned to it from the prediction of lowest cost.

Fig. 5. Example of conforming an agent’s planned velocity to a

boundary constraint. The agent, represented as a red disk, has

initially planned a velocity v0. If v0 gets executed, it will drive the

agent to a region that is too close to the boundary (gray area).

Instead, the agent executes velocity v, extracted by projecting v0

onto the environment boundary, directing it towards the direction

of maximum increase to agent’s destination (here, to the left) and

setting k v k = k v0 k.
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it is also not practical. The sensing limitations would prohi-

bit the emergence of a large number of agents. Even if more

agents are sensed, pruning them to the subset of directly

reactive agents is a motivated and human-inspired way of

reducing the load. Future work involves the design of an

online data-driven topology-classification mechanism that

would enable agents to directly estimate the most likely

candidates, without brute-forcing their evaluation.

6. Evaluation

In this section, we present two main studies evaluating the

main technical components of our work: the HCP trajectory

generation framework and HCPnav decentralized naviga-

tion algorithm.

6.1. HCP performance

We characterize the ability of HCP to generate multiagent

trajectories of desired topological specifications. We pres-

ent empirical evidence illustrating the scaling properties

and perform a comparative study against a trajectory-

optimization framework.

6.1.1. Scaling Properties. We demonstrate the performance

of HCP in generating topologically distinct, multiagent

navigation trajectories. We consider 4 different conditions,

corresponding to different numbers of agents (2, 3, 4, and 5

agents), navigating in a circular workspace of radius 2.5 m

(agents are represented as disks of radius 0.3 m). For each

condition n 2 f2, 3, 4, 5g, we randomly generate 100 dis-

tinct scenarios, by assigning agents initial and final loca-

tions that lead to challenging multiagent encounters,

requiring competent collision-avoidance maneuvers. We

execute each scenario, 2

n

2

� �
times, each with a distinct

topological specification. We measure the success rate of

the planner in generating the desired topology under all

conditions considered and report it in Table 1 (a trial is con-

sidered successful if the planner was able to produce all of

the distinct topologies). The planner parameters were kept

constant across conditions and scenarios. It can be observed

that the planner performance drops as the number of agents

n increases. The method becomes more sensitive to

parameter tuning, as the effects of the chaotic nature of the

vortex problem (Aref et al., 1989) become more

significant.

6.1.2. Comparison with trajectory optimization. To the

best of the authors’ knowledge, this is the first work to con-

sider the problem of generating multiagent trajectories fol-

lowing desired topological specifications across space and

time in tasks involving multiple interacting agents moving

between arbitrary regions of a shared workspace. To illus-

trate the efficacy of our approach, we present a comparative

evaluation against a baseline framework based on the

CHOMP (covariant Hamiltonian optimization for motion

planning) trajectory-optimization framework (Zucker et al.,

2013).

Although the usecases of CHOMP in the literature focus

on single-robot trajectory optimization problems, we pres-

ent a multiagent extension that accounts for multiagent

navigation scenarios by treating agents’ configurations as

additional independent DoFs (decision variables in the opti-

mization scheme). Our CHOMP baseline adapts the origi-

nally proposed smoothness and obstacle cost functionals to

equivalent multiagent formulations. In addition, we intro-

duce a novel cost functional that quantifies the violation of

a specified topological specification. To ensure a fair com-

parison against HCP, this cost makes use of the same

machinery to enforce a topological specification: the wind-

ing number.

We formulate the problem of multiagent trajectory gen-

eration under topological specifications as an unconstrained

optimization scheme:

X�= argmin
X2Z
C Xð Þ ð20Þ

where C : Z ! R is a real cost functional taking as input a

multiagent trajectory X 2 Z. The cost is defined as

C Xð Þ= wsmF sm(X)+ wobsF obs(X)+ wtopF top(X) ð21Þ

The costs F sm and F obs are adapted from the CHOMP

framework (see the work of Zucker et al. (2013) for details).

In particular, F sm : Z ! R is a functional quantifying the

trajectory smoothness cost as a sum of the individual trajec-

tory smoothness costs:

F sm(X)=
1

2

Xn

i = 1

Z 1

0

d

dt
ji(t)

����
����

����
����
2

dt ð22Þ

whereas F obs : Z ! R is a functional quantifying the overall

trajectory clearance, defined as a sum of the clearance costs

for all pairs of agents, multiplied by their relative speed:

F obs(j)=
X

ij

Z 1

0

c ji(t), jj(t)
� �

× d

dt
ji(t)� jj(t)
� �����

����
����

����dt

ð23Þ

Table 1. Success rate of HCP in generating the desired trajectory

topology across three conditions. For each condition, the success

rate is computed within 100 randomly generated scenarios.

Condition

2 agents 3 agents 4 agents 5 agents

Number of
outcomes

2 6 64 1024

Success (%) 1 99.75 89.70 65.48
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Finally, we introduce a topology enforcement functional,

using the definition of the winding number:

F top(j)=
1

2

X
ij

lij(1� e)� l�ij

� �2

ð24Þ

where lij(1� e) denotes the winding number resulting

from the motion of agents i and j, from time t = 0 until

time t = 1� e and l�ij denotes a specification for the wind-

ing of the trajectories of these agents (0.5 for right-hand

side collision avoidance and �0.5 for left-hand side colli-

sion avoidance). The parameter e is introduced to define a

timing before agents’ trajectories reach their final endpoints

(destinations). This is done to allow for a smoother conver-

gence during the optimization process: instead of jumping

between discrete values, it allows the topology functional

to take values in a continuous domain.

To illustrate the difficulty of automatically synthesizing

multiagent trajectories of desired topological specifications

through trajectory optimization techniques, we consider a sim-

ple case study, in which we compare the performance of HCP

with the performance of the outlined CHOMP baseline

(Zucker et al., 2013). We randomly generate 500 different sce-

narios involving 2 agents navigating towards opposing sides

of a circular workspace (workspace has 5m diameter,

starting positions are uniformly distributed along the circum-

ference, speed normally distributed between 0.3 and 1.5 m s
�1 for each agent). For each scenario, we randomly sample a

passing side that agents should pass one another from. We

execute this scenario with both HCP and CHOMP, consider-

ing the passing side as an additional specification to the

problem.

Table 1 describes the performance of the two

approaches, which is measured with respect to success rate

and computation time (non-optimized Matlab implementa-

tion on a MacBook Pro of 2015 with an Intel Core i7 pro-

cessor of 2.5 GHz, running macOS High Sierra). For

CHOMP, a trial is considered successful if it generates tra-

jectories of the desired topology within 500 iterations

whereas for HCP, a trial is considered successful if the

desired topology is achieved once the agents reach their

destinations. It can be observed that HCP dominates with a

success rate of 98:40% (corresponding to 492/500 success-

ful trials). The computation time is comparable in terms of

interactions but HCP requires almost two orders of magni-

tude less time in seconds. The benefits provided by HCP in

terms of success rate and computation time make the con-

sideration of multiple trajectory topologies at planning time

a more practical strategy.

6.1.3. Qualitative results. We illustrate the efficacy of HCP

through qualitative results acquired in challenging example

scenarios. In particular, we take the following approach: we

select a randomly generated multiagent navigation scenario

involving n agents, and execute it jWj= 2
n
2

� �
times, each

corresponding to a distinct topology fromW.

Figure 6 depicts the trajectories generated by HCP under

all possible topologies (eight) for the same scenario (same

starting and final configurations). Figure 7 depicts the tra-

jectories generated by HCP for the same 4-agent scenario,

executed for all possible topologies (64). We verified that

for both examples, HCP was able to generate correctly all

desired topologies.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Top view of trajectories generated by executing the same 3-agent scenario with all possible topological specifications.

Topology tuple that was used as a specification for each execution: (a) (1, 1, 1); (b) (� 1, � 1, � 1); (c) (1, � 1, 1); (d)

(� 1, 1, � 1); (e) (1, 1, � 1); (f) (� 1, � 1, 1); (g) (1, � 1, 1); (h) (� 1, 1, � 1).
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6.2. HCPnav performance

At planning time, HCPnav uses HCP to generate multiple

candidate futures represented as multiagent trajectories,

evaluates them with respect to trajectory quality as dis-

cussed in Section 5, and follows the future of minimum

cost. Figure 8 shows examples of the decision making per-

formed by HCPnav at during a navigation experiment in

scenarios involving two, three, and four agents.

To demonstrate the virtues of HCPnav (Algorithm 1),

we perform a series of simulation studies. We first

(-1,-1,-1,-1,-1,-1) (-1,-1,-1,-1,-1,1) (-1,-1,-1,-1,1,-1) (-1,-1,-1,-1,1,1) (-1,-1,-1,1,-1,-1) (-1,-1,-1,1,-1,1) (-1,-1,-1,1,1,-1) (-1,-1,-1,1,1,1)

(-1,-1,1,-1,-1,-1) (-1,-1,1,-1,-1,1) (-1,-1,1,-1,1,-1) (-1,-1,1,-1,1,1) (-1,-1,1,1,-1,-1) (-1,-1,1,1,-1,1) (-1,-1,1,1,1,-1) (-1,-1,1,1,1,1)

(-1,1,-1,-1,-1,-1) (-1,1,-1,-1,-1,1) (-1,1,-1,-1,1,-1) (-1,1,-1,-1,1,1) (-1,1,-1,1,-1,-1) (-1,1,-1,1,-1,1) (-1,1,-1,1,1,-1) (-1,1,-1,1,1,1)

(-1,1,1,-1,-1,-1) (-1,1,1,-1,-1,1) (-1,1,1,-1,1,-1) (-1,1,1,-1,1,1) (-1,1,1,1,-1,-1) (-1,1,1,1,-1,1) (-1,1,1,1,1,-1) (-1,1,1,1,1,1)

(1,-1,-1,-1,-1,-1) (1,-1,-1,-1,-1,1) (1,-1,-1,-1,1,-1) (1,-1,-1,-1,1,1) (1,-1,-1,1,-1,-1) (1,-1,-1,1,-1,1) (1,-1,-1,1,1,-1) (1,-1,-1,1,1,1)

(1,-1,1,-1,-1,-1) (1,-1,1,-1,-1,1) (1,-1,1,-1,1,-1) (1,-1,1,-1,1,1) (1,-1,1,1,-1,-1) (1,-1,1,1,-1,1) (1,-1,1,1,1,-1) (1,-1,1,1,1,1)

(1,1,-1,-1,-1,-1) (1,1,-1,-1,-1,1) (1,1,-1,-1,1,-1) (1,1,-1,-1,1,1) (1,1,-1,1,-1,-1) (1,1,-1,1,-1,1) (1,1,-1,1,1,-1) (1,1,-1,1,1,1)

(1,1,1,-1,-1,-1) (1,1,1,-1,-1,1) (1,1,1,-1,1,-1) (1,1,1,-1,1,1) (1,1,1,1,-1,-1) (1,1,1,1,-1,1) (1,1,1,1,1,-1) (1,1,1,1,1,1)

Fig. 7. Top view of trajectories generated by executing the same four-agent scenario with all possible topological specifications. The

subcaptions denote the topology tuple that was used as a specification for each execution.
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characterize the scaling properties of the algorithm, consid-

ering a series of scenarios involving different numbers of

agents and execution settings Next, we explore the applic-

ability of HCPnav in environments with boundaries of dif-

ferent geometries.

6.2.1. Scaling properties. We investigate the ability of

HCPnav to handle different execution settings. We focus

on an environment of fixed geometry (a circle with a radius

of 5 m) and consider nine different experiment configura-

tions, defined by varying the number of agents (two, three,

and four agents) and the policy profile (the mixture of poli-

cies agents are running). We consider three different policy

profiles: (a) a homogeneous profile under which all agents

run the same planner; (b) a heterogeneous condition under

which one agent runs our planner and others are inatten-

tive, moving straight to their goals without avoiding colli-

sions; (c) a heterogeneous condition in which one agent

runs our planner and others are uncertain, changing inten-

tions over a destination twice, without avoiding collisions.

Note that the two latter cases are particularly challenging

for decentralized planners, as a typical assumption they rely

heavily on is homogeneity.

For reference, we execute the same scenarios upon

replacing HCPnav with a baseline: ORCA (van den Berg

et al., 2009) (setting clearance and speed parameters to

reproduce qualitatively similar considerations as HCPnav).

We selected ORCA as it constitutes a decentralized frame-

work for multiagent simulation with a readily available

code implementation and a thorough documentation that is

widely employed as a baseline in multirobot planning

research.

We quantify the performance of each reactive agent

(HCPnav or ORCA) with respect to four aspects of trajec-

tory quality: (a) experiment time, measured as the amount

of time that the last reactive agent took to reach its destina-

tion; (b) safety, measured as the minimum distance between

any two agents under homogeneous settings, and as the

minimum distance between a reactive agent and any other

agent under heterogeneous settings; (c) path efficiency,

measured as the ratio between the length of the optimal

path to goal and the length of the path that a reactive agent

followed (averaged over the number of agents in the homo-

geneous case); (d) trajectory acceleration, measured as the

average acceleration per time step per reactive agent

throughout the experiment. Figure 9 depicts the perfor-

mance of HCPnav and ORCA under the outlined experi-

mental configurations in terms of the metrics considered.

For each configuration (number of agents and policy pro-

file), each planner executed the same set of 200 randomly

generated scenarios.

Overall, we observe that HCPnav outperforms ORCA

under homogeneous settings. In particular, HCPnav is sig-

nificantly more time-efficient and safer even as the number

of agents increases. These features of HCPnav could be

attributed to the implicit consensus that is reached earlier

through the consideration of joint strategies of collision

avoidance. HCPnav accomplishes this while remaining

path-efficient (.80% at all times). However, the collision-

avoidance maneuvers generated by HCPnav require higher

accelerations to implement (see Figure 8 for an illustration

of trajectories generated by HCPnav). In parallel, ORCA

dominates in path efficiency and acceleration at all times.

This was expected as ORCA explicitly exploits a bidirec-

tional symmetry: (a) all agents run the same exact policy

and (b) they know that they do so. This enables the extrac-

tion of guarantees for collision avoidance over limited time

windows under velocity and clearance constraints. In con-

trast, HCPnav is agnostic to the exact policies that others

are following; it does perform better if others are following

the same policy (as illustrated in our findings) but it does

not require that others do so. Furthermore, ORCA is a local

approach whereas HCPnav, leveraging the complete trajec-

tory prediction provided by HCP, is effectively a global

(a) (b) (c)

Fig. 8. Overlaid predictions made by a HCPnav agent (red color) as it navigates towards the red landmark in environments with (a)

two, (b) three, and (c) four agents.
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approach. This is in part why HCPnav is shown to have

lower path efficiency and higher accelerations: HCPnav

proactively adapts agents’ behaviors towards an outcome of

joint collision avoidance.

We also study the performance of HCPnav under het-

erogeneous settings. We see that under the inattentive con-

dition, HCPnav is unsafe (\0:6 m for all numbers of

agents) whereas ORCA is able to keep a consistently small

collision-free clearance to other agents (\0:8 m).

However, we still see that ORCA’s path and time efficiency

drop significantly, as expected: after all, ORCA was also

not meant to accommodate uncooperative agents. However,

we see that under the uncertain condition, HCPnav is capa-

ble of ensuring a small threshold of safety (.0:7 m) for

(a) (b)

(c) (d)

Fig. 9. Trajectory quality for all experiment configurations considered: (a) experiment time; (b) safety; (c) path efficiency; (d)

trajectory acceleration. For group size, the same 200 randomly generated scenarios are executed under each of the conditions

considered with both planners. For each condition and measure, we perform a paired Student’s t-test to compare the populations

yielded by HCPnav and ORCA. Points with black circular boundaries indicate rejection of the null hypothesis with p-value \0:001

whereas points with star boundaries indicate rejection of the null hypothesis with p-value \0:05.
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experiments involving two and three agents whereas

ORCA is at the boundary of safety (’0:6 m). In these

experiments, we see that HCPnav is also significantly more

time efficient, but it takes longer paths and exhibits higher

accelerations. ORCA handles the four-agent case but with

limited time efficiency and marginal safety.

It should be noted that this evaluation is not meant as an

attempt to outperform ORCA which was specifically

designed to provide a computationally efficient framework

for multiagent simulation. It is meant as a demonstration

that HCPnav, a navigation framework leveraging our main

contribution (HCP) is capable of achieving comparable per-

formance to ORCA in a series of interesting scenarios

under a variety of settings. Note also that the use of alterna-

tive cost functions within the HCPnav framework could

promote or reject candidate coordination primitives in dif-

ferent ways which could also affect performance; the cost

functions employed in the present article express important

navigation specifications but their functional form or para-

metrization was not optimized. In general, HCPnav serves

as an example of the capabilities of HCP, which could be

incorporated in a variety of alternative frameworks to pro-

vide valid predictions (e.g., MPC-based approaches).

6.2.2. Handling alternative workspace geometries. We

present a series of examples, demonstrating the ability of

our framework to generate motion that conforms to distinct

workspace boundaries, through the use of the mechanism

proposed in Section 5.4. Figure 10 demonstrates the trajec-

tories generated by running HCPnav in four different envir-

onments: a rectangular corridor (Figure 10(a)), a square

workspace (Figure 10(b)), a T-junction (Figure 10(c)), and

a crossroad (Figure 10(d)). For each workspace, we uni-

formly sample agents’ starting and ending configurations.

The figures depict the top view of the scenes, with agents’

trajectories represented as swept volumes (an agent cross-

ing ‘‘over’’ another indicates a later passing).

Overall, we observe that the agents avoid each other

while respecting the bounds of the workspace. The bound-

ary limits the applicability of the cooperative strategies

(a)

(b)

(c)

(d)

Fig. 10. Trajectories extracted by running HCPnav on workspaces of different boundary geometries: (a) corridor; (b) square; (c) T-

junction; (d) crossroad.

1250 The International Journal of Robotics Research 40(10-11)



generated by HCP but we still see that agents manage to

coordinate thanks to the proactive character of the decision

making induced by HCPnav.

7. Discussion

We presented a framework for generating trajectories of

desired spatiotemporal entanglement for multiple holo-

nomic agents navigating on the plane. In multiagent naviga-

tion domains, the spatiotemporal entanglement of agents’

trajectories captures crucial features of the dynamics of

interaction among them. In this article, we modeled this

entanglement through the introduction of a mathematical

formalism, based on the winding number topological invar-

iant. This formalism has a dual symbolic and analytical

nature, providing powerful abstraction while enabling geo-

metric reasoning. Leveraging these properties, we intro-

duced a trajectory generation framework, HCP, that

generates multiagent trajectories of desired topological

specifications. HCP achieves that by modeling agents as

interacting dynamical systems with desired properties (vor-

tices). As the vortices interact with each other, they produce

multiagent trajectories that are entangled in the desired

way. Through qualitative and quantitative analysis, we illu-

strated the efficacy of HCP in generating desired multia-

gent trajectory topologies in challenging scenarios. We also

demonstrated the scaling properties and computational effi-

ciency of HCP in a comparative study against a trajectory-

optimization baseline. To illustrate the value of HCP for

multiagent applications, we developed HCPnav, a cost-

based motion planner that acts directly on HCPs, following

ego-motion that corresponds to the primitive of minimum

cost. HCPnav was shown to perform comparably to ORCA

(van den Berg et al., 2009), a widely employed framework

for multirobot navigation in a variety of scenarios. HCP

could be a valuable component of alternative planning and

control frameworks including, e.g., model predictive con-

trollers (Garcı́a et al., 1989).

The HCP framework introduces a series of novel fea-

tures and advances that improve upon past work in the

area. Past work has proposed techniques for generating

topologically distinct trajectories for a single robot in a

cluttered environment (Bhattacharya et al., 2012; Pokorny

and Kragic, 2015; Rösmann et al., 2017). Instead, our

framework focuses on global trajectory generation subject

to topological constraints for multiple reactive agents, navi-

gating between arbitrary configurations in R
2, a problem

with important real-world instantiations (e.g., social robot

navigation, multirobot planning, etc.). Some works in this

area employ topological braids as the basis of abstracting

multiagent navigation behaviors (e.g., Diaz-Mercado and

Egerstedt, 2017; Mavrogiannis and Knepper, 2019). Braids

require the selection of a projection plane in order to sym-

bolically express multiagent motion primitives which are

only symbolically described. In contrast, our work employs

a representation based on the winding number, which

directly offers analytical descriptions of symbolically

defined primitives. These descriptions enable the adoption

of a variety of techniques for control design and trajectory

optimization.

In this article, we built upon the framework of Berger

(2001a) which constructs interacting dynamical systems

for braided trajectory generation. The application of

gradient-based trajectory-optimization techniques to

motion planning problems in robotics often entails

weighted sums of functionals, which act on trajectories

locally, thus often losing sight of global, topological speci-

fications in favor of alternative local cost improvements. In

contrast, the laws of motion extracted from the construction

of appropriately parametrized interacting dynamical sys-

tems incorporate a global understanding of the unfolding

trajectory topology, yielding reactive motion that balances

the satisfaction of topological constraints with goal-

reaching maneuvers. Similar to gradient-based optimization

techniques, our method cannot guarantee the attainment of

global optima. However, our empirical findings illustrate

that the dynamics-based machinery of the HCP outper-

forms the trajectory-optimization baseline across a class of

problems.

Finally, our decentralized-navigation experiments

showed that HCPnav is capable of performing comparably

with ORCA across a number of experiments. HCPnav per-

forms better under homogeneous settings, exhibiting signif-

icantly more time-efficient and safer motion than ORCA.

This was expected because it generates motion correspond-

ing to HCP primitives, explicitly following coordination

protocols. We show that HCPnav is capable of handling

scenarios within moderately crowded environments (2–4

agents) and that it can adapt to agents with changing

intentions.

7.1. Limitations and directions for future work

Our work is limited in a few ways. We discuss the main

limitations and offer directions for future work.

First, HCP comes with no guarantees on the satisfaction

of topological constraints. Our empirical evidence showed

that HCP achieves almost near-perfect performance for sce-

narios involving up to four agents, and satisfactory perfor-

mance in scenarios involving five agents (see Table 1).

Some of the failure cases correspond to topologies that

were physically unattainable, i.e., topologies that would

require unrealistic maneuvers to achieve as the topology

representation w is agnostic to realizability. Future work

Table 2. Success rates and computation times for HCP and

CHOMP over 500 randomly generated 2-agent scenarios

Planner Success (%) Iterations Time (s)

CHOMP 78.80 80.3325 0.1291
HCP 98.40 86.8862 0.0048
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will look into ways to quantify the realizability of topologi-

cal specifications. The likelihood formalism employed

under the HCPnav framework represents an indication of

realizability but additional work is needed to come up with

a formal model.

Furthermore, although HCP is shown to be computation-

ally efficient compared with CHOMP (see Table 2), in prac-

tice, we observed a computational overhead that prevented

us from running experiments with more than 5 agents on

our non-optimized implementation (Matlab code running

on a MacBook Pro with an Intel Core i7 processor at 2.5

GHz). The same observation prevented us from scaling

HCPnav to experiments beyond four agents. Although

these observations are in part an artifact of our limited com-

putational resources and implementation, the exponential

complexity of running computations across pairs of agents

is a fundamental limitation of our approach. However, note

that the goal of our framework was not to scale to arbitrary

numbers of agents (such as ORCA); our goal was specifi-

cally to design a framework that can, under specific condi-

tions, generate desired multiagent trajectory topologies. As

discussed, to the best of the authors’ knowledge, HCP is the

first framework to generate multiagent navigation trajec-

tories driving agents between arbitrary configurations on

the plane under topological constraints on their spatiotem-

poral pattern. The proposed HCPnav framework constitutes

a first example of how HCP could prove useful for multia-

gent navigation scenarios. Note that under real-world condi-

tions, even humans tend to not consider explicitly all agents

present in a navigation environment but rather tend to clus-

ter entities together when planning paths, effectively rea-

soning about limited numbers of agents (Mavrogiannis

et al., 2019; Wang and Steinfeld, 2020). Finally, for robots

that tend to have a limited sensing radius and horizon, the

scaling property does not appear to be of central concern:

the number of agents that the robot would interact with at

the same time would always be bounded by an area of lim-

ited coverage.

The presented frameworks (HCP and HCPnav) were

introduced as novel paradigms for multiagent trajectory

generation and decentralized multiagent collision avoid-

ance. Their performance could be further improved by

fine-tuning their parameters through the use of empirical or

optimization-based techniques. For instance, the gain para-

meters k, krep or katt of HCP could be fine-tuned to yield

better performance. Furthermore, alternative criticality

functions cij could be employed to yield more aggressive or

defensive behavior. Similarly, the performance of HCPnav

could be improved by considering alternative parametriza-

tions or alternative functional form for its components. For

example, the accuracy of the probability model of (16)

could be improved using data-driven techniques

(Mavrogiannis et al., 2017). Finally, the weights of the cost

of (18) could be further tuned and the costs considered

could be replaced with alternative ones. Similarly, the run-

time and performance of the geometry-conforming module

could be improved by considering a precomputed distance

map. Although all mentioned improvements could further

improve performance, our main focus on this article was

not to provide a fine-tuned implementation, but rather to

contribute a general blueprint based upon which research-

ers and practitioners could iterate upon to get the desired

performance based on their application.

Finally, we considered a deliberately simplified setup to

specifically focus on the feasibility of enforcing topological

constraints to multiagent trajectory generation. We consid-

ered holonomic systems, which simplify the incorporation

of topological constraints to motion planning problems.

However, many real-world mobile-robot systems feature

non-holonomically constrained kinematics which motivates

their consideration in future work. We also presented a

simulated evaluation that focused on the quantification of

trajectory properties under offline (HCP) and online

(HCPnav) settings. Future work will address the challenges

of real-world implementation, considering a non-holonomic

miniature robotic racecar platform (Srinivasa et al., 2019)

deployed in a lab environment.

Funding

This material is based upon work supported by the National

Science Foundation (grant numbers IIS-1526035 and IIS-

1563705).

ORCID iDs

Christoforos Mavrogiannis https://orcid.org/0000-0003-4476-

1920

Note

1. In this article, we model the criticality term as the inverse of

a polynomial function of the distance between two agents,

activated when the distance becomes lower than a threshold.

Alternative options could also be employed.
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