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Abstract— We focus on the problem of analyzing multiagent
interactions in traffic domains. Understanding the space of
behavior of real-world traffic may offer significant advantages
for algorithmic design, data-driven methodologies, and bench-
marking. However, the high dimensionality of the space and the
stochasticity of human behavior may hinder the identification
of important interaction patterns. Our key insight is that
traffic environments feature significant geometric and temporal
structure, leading to highly organized collective behaviors,
often drawn from a small set of dominant modes. In this
work, we propose a representation based on the formalism
of topological braids that can summarize arbitrarily complex
multiagent behavior into a compact object of dual geometric
and symbolic nature, capturing critical events of interaction.
This representation allows us to formally enumerate the space
of outcomes in a traffic scene and characterize their complexity.
We illustrate the value of the proposed representation in
summarizing critical aspects of real-world traffic behavior
through a case study on recent driving datasets. We show
that despite the density of real-world traffic, observed behavior
tends to follow highly organized patterns of low interaction. Our
framework may be a valuable tool for evaluating the richness of
driving datasets, but also for synthetically designing balanced
training datasets or benchmarks.

I. INTRODUCTION

Traffic scenes pose unique challenges for prediction and
planning [33, 13, 32, 9, 22] due to their high dimensionality,
the complexity of modeling human behavior, and the perfor-
mance standards motivated by the safety-critical nature of
the domain. Despite these complications, real-world traffic
scenes often feature significant structure. Vehicles follow
designated lanes, and traffic is regulated through traffic
signals and signs or coordinated via turn indicators. Driver
behavior can often be modeled as rational, characterized
by risk aversion and efficiency-seeking objectives. Recent
work has leveraged these observations in the design of data-
driven models for behavior prediction and planning [41, 5,
32, 15, 34]. To measure and transfer their performance to
the real world, such models require large, balanced datasets,
containing a diversity of behavior that is representative of
real-world traffic. This requires an understanding of the
space of behavior that typically unfolds in different scenes.
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Fig. 1: This work proposes a formal framework for the
characterization of multiagent behavior in driving domains.
Complex multiagent interactions encountered in real-world
driving domains such as a roundabout can be compactly
represented as topological braids (right).

While there exist tools for characterizing various aspects of
behavior [42, 20, 9, 22], summarizing multiagent interaction
in an intuitive and formal way is hindered by the high
dimensionality and the stochasticity of human behavior.

Our key insight is that the behavior encountered in traffic
scenes often exhibits prevalent topological structure: com-
mon events like overtaking, merging or traversing a round-
about (Fig. 1) give rise to interactions of distinct topological
signatures [2]. In this work, we abstract multiagent behavior
in a traffic scene into a topological braid [1], a compact and
interpretable topological object with symbolic and geometric
descriptions. Building on past work on the use of braids for
multiagent navigation [25], we make the following contri-
butions. First, we adapt the representation of Mavrogiannis
and Knepper [25] to structured domains like driving envi-
ronments through a rigorous mathematical presentation. We
then study its computational properties, and discuss how a
measure of complexity based on braids [11] may capture the
interactivity of a traffic scene. We show that our framework
is applicable to complex scenes through a case study on
real-world intersections and roundabouts [4, 18]. We cluster
the behaviors exhibited in these scenes into braids, and
characterize their complexity. We find that in the majority
of scenes, a few simple braids dominate, indicating a low
degree of interaction despite the high traffic density. Our
methodology can be valuable for the analysis and design of
road networks, the design and benchmarking of data-driven
frameworks for prediction and planning, the evaluation and
generation of driving datasets.



II. RELATED WORK

Recent work on behavior prediction and decision making
for autonomous driving applications has leveraged discrete,
semantic representations of traffic behavior. For instance,
Wang et al. [43] classify discrete driving styles using a
variant of hidden Markov models (HMM). Gadepally et al.
[13] also use HMM to estimate long-term driver behav-
iors from a sequence of discrete decisions. Others, such
as Konidaris et al. [17] and Shalev-Shwartz et al. [36],
propose using learned symbolic representations for high-level
planning and collision avoidance, via a hierarchical options
model. Similarly, Shu et al. [37] learn a latent representation
of interactions. While these works uncover discrete represen-
tations of driving behavior, they either require large datasets
to learn discrete modes or specify them manually without
harnessing the rich geometric structure of the environment.

Another body of work has focused on tools for testing and
validation in realistic settings, leveraging a semantic-level
understanding of interactions. Tian et al. [41] model traffic
at unsignalized intersections using tools from game theory
and propose a verification testbed for navigation algorithms.
Liebenwein et al. [20] propose a framework for safety
verification of driving controllers based on compositional
and contract-based principles. Hsu et al. [15] investigate
how velocity signals generated by Markov decision processes
affect interaction dynamics at intersections. DeCastro et al.
[9] construct a representation of multi-vehicle interaction
outcomes based on latent parameters using a generative
model. Tolstaya et al. [42] propose an Interactivity score that
enables the identification of interesting interactive scenarios
for training generative models. Our work is similar in spirit
and complementary to this latter line of work. We also
approach a notion of interactivity between agents. However,
instead of investigating statistical properties of distributions,
we focus on the aspect of the representation, through the
introduction of tools from low-dimensional topology.

Recently, roboticists have been increasingly making use
of topological representations to model the rich structure
of real-world domains. These include knitting [21], untan-
gling [14] or knot planning [44], aircraft conflict resolu-
tion [16] or multiagent navigation [10]. Some works leverage
insights from homotopy theory [7, 3], persistent homol-
ogy [30] and fiber bundles [28]. Some other works make
use of topological abstractions such as invariants [24, 23, 32]
and braids [26, 25] as representatives of multiagent motion
primitives for prediction and planning. In this paper, we are
following up on this latter body of work work by employing
topological braids as an abstraction of traffic behavior. While
past work considered simplified simulation domains [26, 25],
in this paper, we adapt the braid presentation to accommodate
rich traffic environments such as real-world intersections or
roundabouts. To the best of our knowledge this paper is the
first to investigate the applicability of braids as primitives for
multiagent behavior in realistic real-world environments.
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Fig. 2: Presentation of the braid group, Bn.

III. ABSTRACTING DRIVING INTERACTIONS AS
TOPOLOGICAL BRAIDS

We introduce a representation based on topological
braids [1], that captures critical interaction events in street
environments (e.g., overtaking, merging, crossing). This
representation describes such interactions as sequences of
symbols describing topological relationships between agents;
any possible interaction manifests as a unique symbolic
representation of their trajectories. Our representation adapts
the presentation of Mavrogiannis and Knepper [25] to real-
world traffic domains through theoretical developments.

A. Domain
Consider a structured domain Q ✓ R2 where n > 1 agents

are navigating from time t = 0 to a finite final time t1.
Define by qi 2 Q the position of agent i 2 N = {1, . . . , n}
with respect to a fixed reference frame. Agent i follows
a trajectory ⇠i : [0, t1] ! Q. Collectively, agents follow
a system trajectory ⌅ = (⇠1, . . . , ⇠n). This trajectory is a
detailed representation of the collective strategy that agents
followed to avoid each other while following their paths.
Their strategy can be summarized as a set of discrete relation-
ships, such as the passing sides or crossing order of agents.
These relationships are formed as a result of the geometric
structure of the environment, traffic regulations, and agents’
policies. In this paper, we show that such relationships
feature topological properties that can be succinctly captured
by the representation of topological braids [1].

B. Topological Braids
A braid is a tuple bf = (f1, . . . , fn) of functions fi : I !

R2⇥I , i 2 N , defined on a domain I = [0, 1] and embedded
in a Cartesian space (x̂, ŷ, t̂). These functions, called strands,
are monotonically increasing along the t̂ direction, satisfying
the properties: (a) fi(0) = (i, 0, 0), and fi(1) = (pf (i), 0, 1),
where pf : N ! N is a permutation in the symmetric group
Nn; (b) fi(t) 6= fj(t) 8 t 2 I , j 6= i 2 N . Two braids, bf =
(f1, . . . , fn), bg = (g1, . . . , gn), can be composed through
a composition operation (Fig. 2b): their composition, bh =
bf · bg , is also a braid bh = (h1, . . . , hn), comprising a set
of n curves, defined as:

hi(t) =
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where j = pf (i). The set of all braids on n strands, along
with the composition operation form a group, Bn, called the



(a) Trajectories of four agents
as they navigate an intersection,
plotted in spacetime.

(b) Braid �3 �1 ��1
2 ��1

3 ��1
1

capturing the topological entan-
glement of agents’ trajectories.

Fig. 3: Transition from Cartesian trajectories (a) to topolog-
ical braids (b) via eq. (4) assuming a x-t projection.

Braid group on n strands. Following Artin’s presentation [1],
the braid group Bn can be generated from n � 1 primitive
braids �1, ...,�n�1 (see Fig. 2a), called generators, and their
inverses, via composition.

A generator is a braid �i = (�1, . . . ,�n), i 2 N \ {n}
for which: (a) �i(0) = (1, 0, 0), and �i(1) = (pi(i), 0, 1),
where pi : N ! N is an adjacent transposition swapping
i and i + 1; (b) there exists a unique tc 2 [0, 1] such that
(�i(tc)� �i+1(tc)) · x̂ = 0 and (�i(tc)� �i+1(tc)) · ŷ > 0.

The inverse of �i is the braid ��1
i

= (��1
1 , . . . ,��1

n
),

i 2 N\n, for which: (a) ��1
i
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i

(1) =
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i
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The identity braid �0 = (�0
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0
n
) implements no

swap, i.e., p0(k) = k for any k 2 N \{n}, yielding �0
k
(0) =

(k, 0, 0), �0
k
(1) = (k, 0, 1) and it holds that @tc 2 [0, 1] such

that (�0
k
(tc)� �0

k+1(tc)) · x̂ = 0.
Any braid can be written as a word, i.e., a product

of generators and their inverses (Fig. 2b), satisfying the
relations:

�i�j = �j�i, |j � i| > 1,

�i�i+1�i = �i+1�i�i+1, 8 i.
(2)

C. Transforming Traffic Trajectories into Braids

We will convert a system trajectory ⌅ into a Cartesian
object with the structure of a topological braid through a se-
quence of operations that retain the topological relationships
among agents’ trajectories.

We define by ⇠x
i
: [0, t1] ! R and ⇠y

i
: [0, t1] ! R the x

and y projections of ⇠i. For t = 0, ranking agents in order of
increasing ⇠x

i
(0), i 2 N value defines a starting permutation

ps : N ! N , where ps(i) denotes the order of agent i. For
t = t1, ranking agents in order of increasing ⇠x

i
(t1) value

defines a final permutation pd : N ! N , where pd(ps(i))
denotes the final ranking of agent i. Thus the execution in
⌅ can be abstracted into a transition from ps to pd.

We denote by ⌧ : I ! [0, t1] a time normalization
function, uniformly mapping I = [0, 1] to the execution time
in the range [0, t1]. We then define the trajectory bounds
as xmin = mini,t ⇠xi (t), xmax = maxi,t ⇠xi (t), and ymin =

(a) Top view. (b) Side projection. (c) Extracted braid.

Fig. 4: Transitioning from a real-world episode to a braid.
The trajectories of (a) are first projected on the plane x-t (b)
and then the braid �2�1�3�2 is reconstructed (c).
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Finally, we define a set of functions (f1, . . . , fn), with fj :
I ! R2 ⇥ I , j 2 N , such that:

fj(a) =
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and j = ps(i), i 2 N . For a 2 (0, 1), the expressions of
(4) scale x-coordinates to lie within [1, n � 1] and the y-
coordinates to lie within [�1, 1] in a way that preserves topo-
logical relationships among trajectories. The set of functions
(f1, . . . , fn) is a topological braid � following the definition
of Sec. III-B. The braid � is topologically equivalent –
ambient-isotopic [27]—to the system trajectory ⌅.

D. Braids as Modes of Traffic Coordination
The transformation of Sec. III-C enables summarization of

a traffic episode into a braid capturing multiagent collision-
avoidance relationships. This braid can be written as a word,
similarly to how Thiffeault [39] converted particle motion in
a fluid to a braid (Fig. 3): a) we label any trajectory crossings
that emerge within the x-t projection as braid generators
by identifying under or over crossings (Fig. 3b); b) we
arrange these generators in temporal order into a braid word.
Note that alternative reference frames can be employed; we
selected the x̂-t̂ plane projection for convenience.

In Fig. 3, four agents cross an intersection. The braid
�3 �1 �

�1
2 ��1

3 ��1
1 2 B4 is a description of how agents

coordinated to avoid each other. The group B4 contains all
ways in which these four agents could possibly avoid each
other. In a scene with n agents, a braid represents a mode
of coordination from the set of possible modes in Bn.

E. Computational Properties of the Representation
To highlight the possible computational benefits arising

from the summarization of traffic episodes into braids, we
study the runtime of enumerating modes of coordination as
topological braids in comparison to enumerating Cartesian



(a) Curve diagram for ��1
1 . (b) Curve diagram for ��1

1 �2.

Fig. 5: Curve diagrams for braids of different complexity.
The braid ��1

1 �2 (b) is more complex (TC = 2) than the
braid ��1

1 (TC = 1.585) shown in (a). This is reflected in the
higher number of intersections between the curve diagram
��1
1 �2 · E and the x-axis (dotted line).

trajectories. Consider a traffic episode of H timesteps, in-
volving n agents. Each agent has T options of routes to
follow and U actions to take at every timestep. We assume
that there is at most one agent per lane, i.e., n  T . The
horizon of the execution is long, and thus n ⌧ H . Further,
U is a realistically rich space of controls, and thus n ⌧ U ,
H ⌧ U and T ⌧ U . Finally, we assume that agents are
goal-driven for the horizon of each episode, and thus they
will cross paths with each other at most once.

The number of possible Cartesian trajectories in this do-
main is Nc = |T |n(|U |n)H . Enumerating these trajectories
runs in time O(2nH log U ). For the same scene, the number
of possible braids generally depends on the structure of
the road network. However, we can bound the number of
possible outcomes as Nb  3(

n
2), where the exponent is

the binomial coefficient representing the number of all pairs
of agents and the base represents the 3 types of possible
interactions per pair that could be represented by a braid,
i.e., “over-crossing”, “under-crossing”, or no crossing. This
enumeration runs in time O(2n

2

).
Theorem III.1. The runtime of enumerating braids is lower
than the runtime of enumerating Cartesian trajectories for the
class of driving problems considered above.

Proof. We want to show that 2n
2

< 2nH log U . This inequal-
ity is equivalent to n < H logU . We assumed that n ⌧ H ,
n ⌧ U , therefore it should also hold that n ⌧ H logU .
Thus the initial inequality holds and supports the statement
that the runtime of enumerating braids is significantly lower
than the runtime of enumerating Cartesian trajectories. ⌅
F. Complexity of Braid Entanglement

The entanglement of the trajectories described by a braid
is indicative of the complexity of the interaction between
agents. We quantify braid complexity using the Topological
Complexity index (TC) of Dynnikov and Wiest [11] for
which we provide an informal definition below.

Assume that a braid � 2 Bn represents the collective
motion of n agents from initial locations �(0) to final
locations �(1). Denote by D2 a closed disk surrounding
agents’ initial positions, �(0). Define by E a set of n � 1

(a) inD 1. (b) inD 2. (c) inD 3. (d) inD 4.

(e) rounD 1. (f) rounD 2. (g) rounD 3. (h) rounD 4.

Fig. 6: Top view of the 8 scenes from the inD and rounD
datasets that we analyzed using topological tools. All trajec-
tories are overlayed on top of the street structures.

disjoint arcs, anchored on the disk, and separating the agents
for t = 0, defining n � 1 distinct regions in the disk
(see Fig. 5). Assume that these regions are rigidly attached
on the agents. As the agents follow the motion described by
� from t = 0 to t = 1, the regions dynamically deform.
The image D = � · E representing the shape of the regions
obtained upon applying the motion described by � on E is
called a curve diagram. The norm of curve diagram D is
defined as the number of intersections of D with the x axis.
Based on the above definitions, we can define the TC index
of a braid � 2 Bn as:

TC(�) = log2(||� · E||)� log2(||E||). (6)

This expression is equivalent to the logarithm of the gain
of intersections with the x-axis, upon application of a braid.
Fig. 5 depicts curve diagrams acquired upon inducing motion
of two different braids on the canonical curve diagram E.

IV. A CASE STUDY ON TRAFFIC DATASETS

We demonstrate how braids may abstract traffic episodes
through a case study on real-world datasets.

A. Datasets
We consider the inD [4] and rounD [18] datasets, con-

taining trajectory data (of vehicles, pedestrians and bicy-
cles) recorded respectively in four intersection scenes and
four roundabout scenes of the German road network. Both
datasets were extracted from drone footage in 25 fps via
computer vision techniques, yielding an estimated positional
error in the order of 10 cm. A top view of the eight scenes is
shown in Fig. 6, and their dimensions are listed in Table I.

B. Methodology
We split each scene into a set of sequential episodes,

sweeping the whole duration of the recording. Each episode
has a fixed duration of �T = 10 s, containing trajectories of
simultaneously navigating agents. From qualitative inspec-
tion, we observed that the most interesting interactions across
all scenes involved vehicle traffic; to highlight dynamic
vehicle traffic, we filtered out agents moving with a speed
lower than 14m s�1 and agents that are too far from each
other (agents that kept a minimum distance greater than
dmin = 10m throughout the episode). This resulted in a
set of episodes summarized in Table I. Using the framework



(a) inD scenes. (b) rounD scenes.

Fig. 7: Cumulative density of TC (Topological Complexity
index) in intersections (a) and roundabouts (b).

(a) inD scenes. (b) rounD scenes.

Fig. 8: Frequency of unique braids in intersections (a)
and roundabouts (b), arranged in order of increasing TC
(Topological Complexity index).

of Sec. III-B, we abstracted the trajectory of each episode
into a braid, leveraging the braid relations of eq. (2). Finally,
we computed the TC score for each braid. We performed all
computations using the Braidlab package [40].

C. Analysis

The behavior in each scene is clustered into a small
number of unique braids, describing vehicles’ interaction
patterns (see Table I). This highlights that real-world traffic
tends to collapse to a small set of outcomes. The extracted
braids are mapped onto the TC values on the right. Fig. 9
depicts episodes of varying TC, drawn from the two datasets,
along with their braid representatives and TC scores. We see
that complex interactions get mapped onto higher TC values.

Fig. 7 shows the empirical cumulative density of TC across
the inD and rounD dataset scenes. We see that each scene
has a distinct complexity growth pattern but in both datasets,
about 60% of episodes are concentrated below TC = 1.5.
This is highlighted in Fig. 8, which shows the relative
frequency of unique braids per scene, organized in order
of increasing TC. We see that the mass of the frequency
is concentrated on the left side for both plots, suggesting
that the majority of episodes feature a relatively low degree
of interaction. This indicates that despite the dense traffic
exhibited in the datasets (Table I), the vast majority of
episodes involve traffic that is orderly and well organized.

TABLE I: Scene details and interaction statistics.

Scene Dimensions (m2) Episodes Agents/Episode (M, SD) Unique braids TC (M, SD)

inD 1 131⇥ 110 347 3.62± 1.76 155 1.62± 0.59
inD 2 59⇥ 64 254 2.82± 1.00 62 1.48± 0.55
inD 3 85⇥ 45 386 2.62± 0.90 41 1.28± 0.66
inD 4 79⇥ 67 174 4.10± 1.51 99 1.79± 0.28

rounD 1 99⇥ 143 58 3.16± 1.45 30 1.20± 0.84
rounD 2 99⇥ 122 59 3.85± 1.75 32 1.54± 0.50
rounD 3 127⇥ 69 574 4.36± 2.28 290 1.43± 0.79
rounD 4 92⇥ 98 1050 4.07± 2.00 476 1.46± 0.83

This is an artifact of the underlying spatiotemporal structure
(geometry, traffic rules, driving styles).

D. Discussion
Our representation enables enumeration of the classes of

multiagent interaction patterns that are theoretically possible
in a traffic scene in a compact and interpretable form. Further,
given a traffic dataset, it allows us to extract the subset
of interaction patterns that are empirically relevant. This
may inform algorithmic design, benchmarking and even road
network design. Importantly, our framework can be valuable
for characterizing a traffic dataset with respect to the support
it provides over the space of theoretically possible behavior
in a domain. Understanding the support of a dataset is crucial
for data-driven approaches [32, 34, 22] but also for guiding
the process of synthetically generating simulated scenarios
to produce diverse datasets.

Our framework is complementary to alternative ap-
proaches for characterizing interaction, such as the interac-
tivity score [42] and distribution-based KL-divergence. The
Interactivity score may miss crucial interaction events: scores
can be large when there is high correlation between two
trajectories (e.g., one car following another), but small when
trajectories are dissimilar (e.g., cars crossing an intersection).
In contrast, TC will account for these situations through the
consideration of the underlying topological structure. Further,
our framework may be directly applicable to any traffic
dataset [12, 6, 8] and even to alternative domains like pedes-
trian tracking [29] or sports analysis [38] without additional
modifications. It may complement temporal logic approaches
for trajectory labeling [31, 19] which often require involved
and domain-specific mathematical treatment [35].

V. CONCLUSION

Abstractions like braids highlight topological patterns of
interaction like vehicles’ crossings or overtaking maneuvers
through projection transforms or simplification rules like
eq. 2. They filter out geometric features, like the temporal
spacing between vehicles or a driver’s erratic maneuvers.
These artifacts could be relevant to traffic analysis. Thus,
the proposed framework is not meant to replace existing,
geometry-focused tools but rather to complement them.

Our goal in this study was to demonstrate that tools from
braid theory can be valuable for the analysis of multiagent
behavior in traffic scenes. Thus, some of the parameters
chosen, e.g., the braid projection plane, the episode duration,
agents’ distance and speed thresholds were not optimally
selected. These parameters could be adapted to the specific
context of a scene or the scope of an investigation.



(a) inD 1, TC = 0. (b) inD 1, TC = 1.5850. (c) inD 1, TC = 3.0444.

(d) inD 3, TC = 0. (e) inD 3, TC = 1.5850. (f) inD 3, TC = 2.5850.

(g) rounD 1, TC = 0. (h) rounD 1, TC = 1.4150. (i) rounD 1, TC = 2.9069.

(j) rounD 2, TC = 0. (k) rounD 2, TC = 1.7162. (l) rounD 2, TC = 2.9386.

(m) rounD 3, TC = 0. (n) rounD 3, TC = 1.2224. (o) rounD 3, TC = 3.2395.

(p) rounD 4, TC = 0. (q) rounD 4, TC = 1. (r) rounD 4, TC = 3.3505.

Fig. 9: Episodes with different Topological Complexity (TC). Each row depicts three episodes yielding distinct braids in the
same scene. At the bottom right of each figure, the braid formed by the data through a x-t side projection of the episode is
plotted. The episodes on each row are organized from left to the right in order of increasing TC. In all scenes, the agents
are following the right-hand traffic convention.
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and D. Burschka. Estimation of collective maneuvers
through cooperative multi-agent planning. In IEEE
Intelligent Vehicles Symposium, IV 2017, Los Angeles,
CA, USA, June 11-14, 2017, pages 624–631, 2017.

[36] S. Shalev-Shwartz, S. Shammah, and A. Shashua. Safe,
Multi-Agent, Reinforcement Learning for Autonomous
Driving. arXiv:1610.03295, 2016.

[37] T. Shu, Y. Peng, L. Fan, H. Lu, and S.-C. Zhu. Per-
ception of human interaction based on motion trajecto-
ries: From aerial videos to decontextualized animations.
Topics in Cognitive Science, 10(1):225–241, 2018.

[38] SportVU. Sportvu basketball player tracking. https:
//www.stats.com/sportvu-basketball/. Accessed: 2021-
05-16.

[39] J.-L. Thiffeault. Braids of entangled particle trajecto-
ries. Chaos, 20(1), 2010.

[40] J.-L. Thiffeault and M. Budišić. Braidlab: A software
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