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Abstract—We focus on robot navigation in crowded environ-
ments. The challenge of predicting the motion of a crowd around
a robot makes it hard to ensure human safety and comfort.
Recent approaches often employ end-to-end techniques for robot
control or deep architectures for high-fidelity human motion
prediction. While these methods achieve important performance
benchmarks in simulated domains, dataset limitations and high
sample complexity tend to prevent them from transferring to real-
world environments. Our key insight is that a low-dimensional
representation that captures critical features of crowd-robot
dynamics could be sufficient to enable a robot to wind through
a crowd smoothly. To this end, we mathematically formalize the
act of passing between two agents as a rotation, using a notion
of topological invariance. Based on this formalism, we design a
cost functional that favors robot trajectories contributing higher
passing progress and penalizes switching between different sides
of a human. We incorporate this functional into a model pre-
dictive controller that employs a simple constant-velocity model
of human motion prediction. This results in robot motion that
accomplishes statistically significantly higher clearances from the
crowd compared to state-of-the-art baselines while maintaining
competitive levels of efficiency, across extensive simulations and
challenging real-world experiments on a self-balancing robot.

I. INTRODUCTION

Navigation in crowds is a challenging task for a mobile
robot [24]. Ensuring human safety [37] and comfort requires
equipping robots with models of human motion prediction.
Predicting the motion of a crowd is fundamentally hard due
to the combinatorial structure of the space [8]. This hardness
is also reflected in the high sample complexity of data-driven
models for human motion prediction [36]. Crucially, predicting
human motion alongside a robot can be even harder: human
response to robot motion is not well understood, and often
driven by novelty effects, limited human mental models, and
context dependency [13, 33, 34, 45]. Collecting demonstra-
tions at scale in such domains is complicated and existing
datasets are still limited.

Despite these challenges, recent approaches to robot nav-
igation in crowds overemphasize end-to-end control policies
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Fig. 1: Honda’s experimental ballbot [12] navigates next to
three users during our lab experiments.

or data-driven models for human trajectory prediction [6, 7, 9,
21]. While these approaches successfully handle controlled or
simulated domains, they suffer from data limitations, exacer-
bated by their high sample complexity and the lack of reliable
crowd simulation engines, exhibiting poor generalization and
transfer to real-world domains.

Interestingly, as shown by Schéller et al. [39], constant
velocity (CV) prediction, a very coarse human motion model
may outperform even complex neural architectures on predic-
tion benchmarks across common pedestrian datasets. This can
be due to the tendency of neural networks to model model
environmental priors, the irrelevance of pedestrians’ motion
history or the hardness of modeling multiagent interactions [8].

While the CV model indeed handles some prediction tasks,
its inability to model cooperation, the foundation of social
order in human navigation [47], results in notable crowd
navigation issues like the “freezing robot” problem [42] and
the “reciprocal dance” [10]. However, encouraged by its
efficacy, our key insight is that a coarse motion model like
CV could be sufficient for a controller that models critical
aspects of interaction. Following this insight, we describe
a low-dimensional abstraction of multiagent dynamics based
on a formalism of pairwise passing, capturing the aspects
of progress and directionality using a notion of topological
invariance. Based on this abstraction, we design a cost that
favors robot trajectories expediting agile passing maneuvers



through a crowd. Around this cost, we design a model pre-
dictive control (MPC) architecture that employs CV as the
human transition model. Through challenging real-world and
simulated scenarios involving navigation of a self-balancing
robot in a crowded environment, we demonstrate that our
controller exhibits significantly safer behavior for similar
efficiency compared to state-of-the-art end-to-end and model-
based baselines. A video with snippets from our experiments
can be found at this link.

II. RELATED WORK

We review work on robot navigation in crowds, highlighting
approaches that model multiagent cooperation to inform robot
decision-making.

A. Robot Navigation in Crowds

Recent work on crowd navigation has employed data-driven
techniques to extract social objectives and prediction models
from datasets [20, 30] and crowd simulation engines [3, 43].
Several approaches used inverse reinforcement learning (IRL)
techniques to recover socially aware control policies. Ziebart
et al. [49] learned a reward function that describes human
decision making for navigation and used it during planning
to avoid obstructing human paths. Kretzschmar et al. [18]
and Kim and Pineau [14] learned robot reward functions
incorporating social preferences like passing from the right
side or respecting users’ personal space. More recently, Chen
et al. [6], Everett et al. [9], Liu et al. [21] employed deep rein-
forcement learning (RL) to learn control policies for decentral-
ized multiagent collision avoidance. Motivated by real-world
constraints, Pérez D’ Arpino et al. [32] employed RL to learn
a navigation policy for obstacle-cluttered indoor environments
whereas Monaci et al. [27] developed an RL vision-based
architecture for robots with narrow field-of-view cameras. In
parallel, some approaches incorporated data-driven predictions
into the general MPC pipeline. For instance, Nishimura et al.
[28] and Roh et al. [35] integrated multimodal trajectory
prediction [38] into the MPC pipeline whereas Wang et al.
[46] incorporated group-based behavior prediction to avoid
intruding the social space of pedestrian groups.

Despite the success of these methods in controlled and
simulated environments, their sample complexity coupled with
the inability of existing crowd simulators to realistically
model crowd motion next to robots limits their applicability
and generalization to new domains. To mitigate this issue,
recent work blends data-driven and model-based reasoning.
For instance, Brito et al. [4] employed an interaction-aware
RL-based subgoal recommendation model to smoothly guide
a MPC towards the robot’s goal. Inspired by their work,
our MPC architecture also makes use of subgoals to inform
the optimization process but additionally adapts the pool of
candidate trajectories to the context by propagating forward
interaction-aware policies.

B. Formalizing Cooperation in Crowd Navigation

Acknowledging the prevalent role of cooperation [47] in
crowd navigation, recent work incorporates the expectation

of human cooperation and rationality into the design of
frameworks for prediction and control [24]. For instance,
Trautman et al. [42] developed a Gaussian-process-based
human motion prediction model that estimates future human
trajectories under the assumption of cooperative and goal-
directed human behavior. Recently, Sun et al. [41] formalized
multiagent cooperation as a superposition of agents’ proba-
bilistic motion preferences, and developed a sampling-based,
cooperation-aware motion planner. Cao et al. [5] developed
a graph-search-based approach that plans robot motion by
discovering channels of safe passages within a crowd. In past
work, we formalized cooperation as inference over multiagent
motion primitives represented as topological symbols [26] and
trajectory sets [23]. This work set the foundation for Social
Momentum (SM) [25], a real-time, reactive controller that
generates robot motion by maximizing the magnitudes of the
pairwise momenta defined between the robot and humans.
This has the effect of producing actions that exaggerate over a
passing side while moving the robot as far as possible. While
this behavior is legible and positively perceived, it can be
undesirable in more densely crowded environments with less
space for maneuverability.

In this paper instead, we formalize a topological notion
of passing based on a pairwise winding number [1], which
enables the robot to monitor and expedite the progress of pass-
ing an agent. Topological representations offer interpretability
and decomposition of challenging problems in robotics [2,
16, 29, 31, 40]. While prior work has also used winding
numbers to capture multimodality in multiagent navigation,
existing approaches do so in a binary sense to predict passing
side preferences [18, 35], essentially discarding the notion of
passing progress provided by the absolute value of the winding
number. Instead, our approach is built around this notion of
passing progress: out of a pool of candidate robot trajectories,
our cost selects the one that contributes the most passing
progress without bias over a passing side. Assuming goal-
directed human behavior around the robot (humans moving
from start to goal), minimizing our cost also has the effect of
preserving a passing side. Our formalism is decoupled from
the constraint of collision avoidance which is instead handled
through a cost based on an explicit approximation of personal
space [15]. Finally, unlike SM [25], which is essentially a
reactive, rule-based controller with a one-step horizon, our
framework incorporates arbitrary horizons through a more
general MPC formulation yielding smoother performance.

III. PRELIMINARIES

In this section, we formalize our domain of interest, and
introduce the technical background of our approach.

A. Problem Statement

Consider a workspace YW C R? where a robot navigates
among n dynamic agents. Denote by sj the state of the robot
and by st € W, i € N = {1,...,n}, the state of agent i at
timestep k. The robot is navigating from a state sg towards a
destination st by executing controls w from a space of controls
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U, subject to its dynamics model s;11 = g(sk,ur). Agent i €
N is navigating from s towards a destination s’ by executing
controls v’ from a space of controls U?, striving for safety
and efficiency. The robot is not aware of agent 7’s destination
s&. or policy. However, we assume that the robot is perfectly
observing the complete world state (sg, s; ™), where sp™ =
(st,...,s%). Our goal is to design a robot policy that enables
the robot to navigate from sy to st safely and efficiently.

B. Model Predictive Control for Crowd Navigation

We employ a discrete MPC formulation that optimizes a
robot control trajectory u from a set U of candidate trajectories
of finite length N with respect to a cost J:
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s.t. Spr1 = g(Sk, uk) ’ M
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where we denote by s = s1.,y the robot trajectory, by s =
(s!,...,s™) the trajectories of agents 1,...,n lying in front
of the robot, and by w = wug.ny_1 a robot control trajectory,
drawn from a set of short-horizon (V) trajectories Y. Finally,
we denote by f a state transition model for agent ¢ that takes
as input the system state history up to A timesteps in the past.

C. V-MPC: Balancing Safety and Efficiency

Many recent crowd navigation controllers follow objectives
related to safety and efficiency [9, 21, 28, 35, 41, 46]. We
defined a baseline Vanilla MPC (V-MPC) encoding such
specifications through a cost J,,:

T (8,8"") = a, T, (8) + aaJa(s, s5™). (2)

The term
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is a goal-tracking cost penalizing trajectories taking the robot
further from its goal, where @), is a weight matrix. The term

N—-1 n
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is a cost penalizing violations to agents’ personal space [11]
through the Asymmetric Gaussian Integral Function Ay of
Kirby [15]. The weights a4, aq encode the relative importance
of cost terms. We approximate agents’ state transition in (1)
through a constant-velocity (CV) motion model s, 11 =
f(si_,..), propagating the velocity of agent i one timestep
dt into the future, ignoring any interactions with other agents.

IV. TOPOLOGY-INFORMED NAVIGATION

We introduce a mathematical representation that enables a
robot to monitor the process of passing other agents. Based on
this representation, we design a cost function that motivates
robot actions contributing more passing progress.
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(b) Passing from the left yields 6 < 0.

Fig. 2: Two different executions of the same scenario. As
agents navigate (color intensity denotes timing), the vector
connecting their positions rotates from 6y to 63. When they
pass each other on the right, this rotation is counterclockwise
(a), whereas when they pass each other on the left (b), it is
clockwise. The winding number integral A = (03 — 0y) /27 is
a topological invariant, independent of the specific paths that
agents take, describing the signed number of times that agents
pass each other.

A. Formalizing Passing as Pairwise Rotation

We denote by xi € R? the position of agent ¢ relative to the
robot at timestep k, and by 0 = /x! the angle of that vector
with respect to a fixed global frame. From time k to k + 1,
agents’ displacement from xj to xj_, results in a rotation

Al =0, — ). We denote by s = s1.x = (51, ,5N)
the robot s trajectory and by s* = s} = (s},...,s%) the
trajectory of agent 4 € A. The quantity
| Nl
(s, 8") = > ,;) Al 4, )

is a winding number [1] representing the signed number
of times that the robot and agent ¢ revolved around each
other over a horizon of N timesteps. In the crowd nav-
igation domains of our focus, where agents exhibit goal-
directed, cooperative behavior, the winding number captures
the progress (magnitude), and side (sign) of passing each other
(see Fig. 2). A right-side passing induces a counterclockwise
rotation yielding a positive winding number (A’ > 0), whereas
a left-side passing yields a clockwise rotation and thus a
negative winding number (\! < 0).



Fig. 3: Effect of minimizing the passing cost. The robot
predicts how the blue and yellow agents will move and selects
an action (black arrow) that maximizes the average passing
progress over the control horizon (color intensity indicates
timing). The circular sectors denote the estimated progress to
be achieved for each agent. The robot ignores agents lying
behind it, i.e., on the negatives of its body z-axis (red color).

B. A Cost Functional that Expedites Passing

Our key insight is that by monitoring and contributing to the
values of %, i € N/, through its own actions, the robot may
anticipate, influence, and proactively adapt to the passing sides
of humans without relying on high-accuracy models of human
motion prediction. To engineer robot motion that expedites the
process of passing between the robot and other agents, we
design the passing cost

Tp(s,85") = — Z)\j’(s, sh)2 (6)

We assume that the future trajectories of human agents s'*
are estimated through a transition model f as shown in (1),
and provided as input in J,. Given st™  the minimization
of J, over s yields a robot trajectory s* that maximizes (on
average) the winding numbers between the robot and human
agents. This trajectory enables the robot to maneuver itself
in a way that aligns with the estimated passing intentions of
others. This corresponds to robot motion that avoids switching
between passing sides as it approaches a human, expediting
and facilitating collision avoidance. Fig. 3 gives intuition about
the effect of minimizing the proposed cost. Note that the cost
of eq. (6) excludes non-reactive agents lying behind the robot.

C. Topology-Informed MPC

The topology-informed MPC (T-MPC) is an extension of
V-MPC (2) that incorporates the functional of (6):

j(S, Sl:n) — j,, T apjp(s’slm)’ (7)

where and a, is a weight of relative significance. T-MPC
strives to expedite passing between the robot and other agents
while respecting their personal space and approaching its
destination. In conjunction, this formulation is designed to
motivate goal-oriented, anticipatory collision avoidance.

Remark: As discussed in Sec. III-B, our core MPC formu-
lation is an optimization over a discrete set of short-horizon
motion primitives. These primitives are scored with respect to
a cost computed by taking into account only agents lying in
front of the robot (see Fig. 3). Thus, the minimization of the
Jp cost in (7) maximizes the average progress with respect to
agents lying in front of the robot. Through subsequent control
cycles, the minimization of 7, contributes consistent progress
to the prevailing passing side; switching to a different side
gets progressively more penalized since it would correspond
to a lower winding number as two agents approach each other.
Once the robot passes a human agent, it stops considering them
in the computation of costs, thus avoiding possible undesired
effects like circling around them.

V. EVALUATION

We evaluated our controller through simulated and real-
world experiments involving robot navigation in crowded
scenes. We used Honda’s experimental ballbot [12] (see Fig. 1)
and its own low-level velocity controller [48]. A ballbot [19] is
a mobile robot with a mechanical body dynamically balancing
on top of an omnidirectional spherical wheel. The ballbot’s
dynamics produces readable [22] and safe behavior [19],
making it amenable for operation in crowded spaces.

A. Baselines

We evaluate our MPC against two baselines from the
literature:

CADRL [9] is a deep RL framework for multiagent colli-
sion avoidance. We adapt the original formulation to handle
ballbot dynamics by augmenting: a) its state s to include the
ballbot’s inclination ¢, and the average distance to the robot’s
goal over the past ¢’ timesteps, Jg; b) its reward function to
include an inclination penalty term

-1 if max
Rican(s) = {—0?1 , if¢>¢ (8)

otherwise,

where ¢4, 1S an inclination threshold (set to 0.25, if ¢ >
®mao the episode terminates), and a reward of progress to
goal Rpo0(s) = 0.1 (d, —dy(s)), where dg(s) is the robot’s
distance to goal. We included the ballbot dynamics as part of
the state transition model. Initializing from the implementation
of [9], we trained the model in two stages, first with 2-4 agents
and then with 2-10 agents.

ORCA [44] is a crowd simulator that is often used in the
evaluation of crowd navigation algorithms [5, 6, 9, 21, 21, 24,
25]. We employ the ORCA configuration of Chen et al. [6].

¢max’
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(c) Five humans.

Fig. 4: The scenarios used in our evaluation. The workspace
is split in 6 zones. We draw agents in their starting zones and
show their destination zones as landmarks of the same color.

B. MPC Implementation

Motivated by the approach of Brito et al. [4], our MPC em-
ploys a set U of rollouts (robot control trajectories) extracted
by propagating a policy 7gi,, towards m = 10 subgoals,
placed around the robot at fixed orientation intervals of ¥
and distance of 8m for 10 timesteps of size dt = 0.1s. We
experimented with three policies: CV, in which we propa-
gate the robot’s state forward assuming a constant preferred
speed of 0.8m/s without collision avoidance considerations;
ORCA [44]; CADRL [9]. For human motion prediction f
we used a CV approximation, propagating humans’ velocities
forward. We tuned all MPC variants through parameter sweeps
for Safety D (m), defined as the minimum distance between
the robot and human agents throughout a trial, and Time to
destination T (s) over 30 randomized trials for each scenario
of Fig. 4. The control loop closed with frequency 10H z.

C. Experiment Design

We conducted our evaluation in a workspace of area
3.6 x 4.5m?. We partitioned the workspace into six zones
of area 1.8 x 1.5m2, and defined three scenarios involving
3, 4, and 5 humans, as shown in Fig. 4. In each scenario,
humans move between start and goal zones, selected to give
rise to challenging human-robot encounters. Across scenarios,
the robot’s start and goal coordinates are fixed at (0,0) and
(3.6,4.5), respectively. The preferred speed for the robot is set
to 0.8m/s which was found to be a natural human walking
speed in pilot trials. We evaluated robot performance with
respect to Safety and Time to destination.

Overall, we anticipated that MPC performance would im-
prove when using rollouts from reactive policies like CADRL
and ORCA since the robot would have an informed way
of reacting to human motion estimates compared to the CV
baseline. Further, we anticipated that T-MPC would outper-
form all baselines in terms of Safety since the passing cost
would enable the robot to make consistent passing progress,
avoiding approaching humans by switching passing sides. We
formalized these insights into the following hypotheses:

H1: MPC controllers with ORCA or CADRL rollouts out-
perform controllers with CV rollouts in terms of Safety
across all scenarios and worlds.
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Fig. 5: Comparison of MPC variants in terms of % change
in Safety over the baselines of the two worlds. Error bars
indicate 95% confidence intervals. Stars indicate significance
levels (p < 0.05, p < 0.01, p < 0.001) according to a U test.

H2: T-MPC outperforms V-MPC with identical rollouts across
all scenarios (3, 4, 5 agents) and worlds (ORCA,
CADRL) in terms of Safety.

H3: T-MPC outperforms both CADRL and ORCA across all
scenarios and worlds in terms of Safety.

Simulations: We instantiated all scenarios from Fig. 4 in
two Gazebo [17] worlds: one in which humans are simulated
as ORCA agents [44], and one as CADRL [9] agents. For
each scenario, we generated 100 trials by sampling start and
goal coordinates for agents, uniformly at random from their
assigned zones. We executed each batch of trials with the
following policies: 1) ORCA; 2) CADRL; 3) V-MPC-CV;
4) V-MPC-ORCA; 5) V-MPC-CADRL; 6) T-MPC-CV; 7)
T-MPC-ORCA; 8) T-MPC-CADRL. Across all simulations,
humans are represented as spheres of 0.3m radius whereas
the robot’s body is modeled as a cylinder of radius 0.2m.

Real-world experiments: We instantiated the scenario
of Fig. 4a in a lab workspace, deploying Honda’s ballbot [12]
to navigate next to three members of our research team
(see Fig. 1). We ran 60 trials of the scenario in which the robot
navigated with three different policies (20 trials per policy): a)
CV in which the robot drives to the goal with constant velocity
without avoiding collisions; b) CADRL; ¢) T-MPC-CADRL.
The users were told to “navigate towards the destinations
designated by the scenario with normal walking speed and to
treat the robot as a walking human”. The users and the robot
wore hats with reflective markers that enabled high-accuracy
localization through an Optitrack motion-capture system of
twelve overhead cameras operating at 120H .



TABLE I: Performance with respect to Safety (D) and Time to destination (7°) per world. Each entry contains a mean and
a standard deviation over 100 trials. The best performing controller per column is printed in bold. Green, orange, and blue
entries are controllers outperformed by the best at significance level of p < 0.001, < 0.01, and < 0.05 respectively (U test).

Scenario Three Humans Four Humans Five Humans
Metric D(m) | T(s) | D(m) | T(s) | D(m) | T(s)
‘World ORCA CADRL ‘ ORCA CADRL ‘ ORCA CADRL ‘ ORCA CADRL ‘ ORCA CADRL ‘ ORCA CADRL
ORCA 0.67 + 0.14 093 4+ 0.26 9.33 + 0.44 10.55 £ 1.13 | 0.64 £ 0.12  0.80 £ 0.26 9.70 + 1.33 11.01 £1.96 | 0.61 +£0.05 0.69 +0.18 | 10.08 + 1.57 1137 4+ 2.32
CADRL 0.68 £+ 0.19 0.97 £ 0.31 9.82 + 1.40 10.50 + 1.60 | 0.63 + 0.11 091 + 0.24 10.34 &+ 1.65 10.62 + 1.49 0.6 + 0.06 0.72 £ 0.18 12.32 + 2.85 12.86 + 3.42
V-MPC-CV 0.64 + 0.13 0.93 0.29 10.87 + 1.11 11.26 1.37 0.61 0.10  0.80 4+ 0.28 10.77 1.26 11.90 + 2.02 0.59 4+ 0.09 0.61 0.17 11.27 2.14 12.70 + 3.17
V-MPC-ORCA 0.74 + 0.24 1.06 &+ 0.29 11.14 £+ 145 12.14 = 1.97 0.66 £ 0.14 1.01 & 0.26 11.66 = 1.70 12.01 = 1.25 0.65 £+ 0.12 0.77 £ 0.24 12.17 = 3.02 13.18 £ 3.12
V-MPC-CADRL | 0.64 + 0.15 0.88 + 0.33 12.61 + 3.22 12.29 + 1.54 0.65 £ 0.15 0.89 + 0.36 11.97 + 2.63 1236 +£2.29 | 0.61 £ 0.14 0.69 + 0.25 1521 + 4.10 13.68 + 3.09
T-MPC-CV 0.67 4 0.16  1.08 = 0.31 10.60 £ 1.16  11.15 £ 1.50 | 0.64 £ 0.13 1.09 £+ 0.31 1044 =099  10.68 £0.90 | 0.63 £0.13 083 £ 0.25 1094 = 1.49  10.88 + 1.14
T-MPC-ORCA 083 +£034 1.13 + 031 11.50 + 2.21 12,15+ 1.83 | 0.78 £ 0.23  1.11 £032 | 11.11 1.98 11.79 +£2.09 | 070 +£ 0.15 0.87 £+ 0.26 12.66 3.52 13.08 + 3.28
T-MPC-CADRL | 0.77 £ 026 1.17 £ 0.38 | 11.15 £ 2.05 1173 £ 1.57 | 075+ 025 114 £ 038 | 11.09 = 1.98 11,13 + 1.46 | 0.66 +0.17  0.87 + 0.28 4.19 £ 3.08 12.65 + 2.61
D. Results N"“““ ) :mnn
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Table I contains the controller performance per scenario S P S 2o
whereas Figs. 5, 6, 7 highlight important observations. A video £ 1 £
with snippets from our experiments can be found at this link. " 2 31
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see that V-MPC and T-MPC exhibit safer performance when
rolling out CADRL or ORCA policies across scenarios in the
two simulated worlds. Thus, Hl was supported.

H2. In Fig. 5, we see that for identical rollouts, T-MPC
is significantly safer than V-MPC across scenarios in the two
simulated worlds. Thus, H2 was also supported.

H3. In the simulated worlds, T-MPC variants with CADRL
and ORCA rollouts generally perform best in terms of Safety
(see Table I). Fig. 6 gives a deeper insight containing raw
datapoints of comparing T-MPC and CADRL/ORCA: in each
world, the best performing T-MPC is the safest. This is even
more pronounced in challenging scenarios with 4 or 5 humans.
Crucially, as shown in Fig. 7, these trends transfer to the real
world; T-MPC-CADRL is safer than CADRL while exhibiting
similar efficiency. Thus, we find that H3 was supported.

VI. DISCUSSION

T-MPC was safer than baselines (H3), using CV prediction,
a very coarse approximation compared to CADRL’s collision
avoidance mechanism, extracted through training for millions
of episodes. It handled robustly different numbers and types of
agents ranging from efficient ORCA agents to socially aware
CADRL agents in both worlds. Through an ablation study,
we showed that T-MPC significantly outperformed alternative
competitive V-MPC architectures (H2) which benefit from
reactive rollouts (H1). Our investigation underscores the value
of integrating a model of passing into robot’s decision making:
by consistently contributing passing progress, the robot is able
to better coordinate safe passages in crowded scenes.

Further, while CADRL and ORCA were more efficient in
simulation (see Table I), this trend did not transfer to the real
world (see Fig. 7b). This demonstrates that while T-MPC could
be improved for efficiency, its performance is competitive
when deployed in realistic settings.

Finally, after the study, users informally confirmed that the
differences between policies were noticeable: they found CV

0.0 100.0 0.0 100.0 2000
CADRL (% change in D over ORCA) ORCA (% change in D over CADRL)

(a) ORCA world. (b) CADRL world.

Fig. 6: Scatter plots of % change in Safety over the world
baseline. The plots compare the best-performing T-MPC for
each world, i.e., T-MPC-ORCA in (a) and T-MPC-CADRL
in (b) against CADRL and ORCA respectively.

to be the least preferred and commended the expressiveness of
T-MPC-CADRL but also the predictability of CADRL. While
these insights are not statistical, they provide nuance and could
inform the design of future large-scale studies [25].

A. Limitations

Evaluation criteria. Safety and efficiency are necessary
but not sufficient attributes for smooth robot performance in
crowded domains. Higher-order properties of robot motion
such as smoothness or acceleration are also known to influence
users’ impressions in terms of comfort [25], personality and
capabilities [45] and it would be important to account for them.

Experimental conditions. While our evaluation scenarios
(Fig. 4) gave rise to challenging human-robot encounters,
human motion was cooperative and goal-directed as users were
instructed to treat the robot like a human pedestrian. Under
such settings, a) our CV-based prediction adapted effectively
to the linear segments of human motion; b) our control strategy
enabled the robot to expedite pairwise passings, leverag-
ing human cooperation. However, in real-world environments
pedestrians are often distracted, rushing, forming groups or
changing intentions as they walk, affected by obstacles and the
context. Our system would not be able to react appropriately
to such motion: CV predictions would not be accurate, and
the non-cooperative human response would challenge our
winding strategy. Transitioning to such settings would require
more expressive models of motion prediction [36] but also
the integration of context-aware cost functions. Engineering
these settings in the real world would also require new
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Fig. 7: Robot Safety (a) and Time to destination (b) in real-
world experiments. Error bars are 95% confidence intervals.

benchmarking experiments that motivate alternative modes of
human behavior in an unbiased fashion. In ongoing work, we
are developing experimental protocols involving pedestrians
with changing intentions, aggressive, and distracted motion.
Hyperparameter tuning. As detailed in Sec.V-B, we op-
timized cost weights for Safety and Time in simulation; we
then employed the same weights to the real world without
any additional fine tuning as the observed behaviors appeared
consistent with simulation. However, we did not perform any
optimization over the rollout parametrization; parameters like
the number of subgoals, their locations, the rollout discretiza-
tion and horizon might have influenced performance. In the
selection of these parameters, we were guided by the goal of
securing a 10Hz control frequency, an empirical standard for
real-time response in moderately dynamic environments [16,
25]. A higher compute budget or a more efficient system
implementation could bring performance improvements.
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