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Abstract
Recently, there has been great interest in deploying autonomous mobile robots
in airports, malls, and hospitals to complete a range of tasks such as deliv-
ery, cleaning, and patrolling. The rich context of these environments gives rise
to highly unstructured motion that is challenging for robots to anticipate and
adapt to. This results in uncomfortable and unsafe human–robot encounters,
poor robot performance, and even catastrophic failures that hinder robot accep-
tance. Such observations havemotivatedmywork on social robot navigation, the
problem of enabling robots to navigate in human environments while account-
ing for human safety and comfort. In this article, I highlight prior work on
expanding the classical autonomy stack with mathematical models and algo-
rithms designed to contribute towards smoother mobile robot deployments in
complex environments.

INTRODUCTION

While the conventional robotics paradigm involves robots
locked in cages or spaces heavily engineered just for them,
in recent years, we have seen many robot deployments in
unstructured and dynamic environments. These include
autonomous cars on the road, delivery robots in cam-
puses and sidewalks, patrolling robots in malls, guide
robots in airports, home robots, and robots in healthcare.
While these deployments have underscored the promise of
robotics for improving productivity and handling tedious
and laborious tasks in real-world settings, they have
also uncovered many technical limitations exemplified by
failures resulting in discomfort, accessibility and safety
hazards, and public dissatisfaction.
The technical challenges encountered during robot

deployments have motivated research that goes beyond
the classical autonomy stack, and expands towards under-
standing more deeply the deployment domains, the users,
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and their dynamics (Mavrogiannis, Baldini et al. 2023).
This is part of a broader community effort within the
field of computational human–robot interaction (Thomaz,
Hoffman, and Cakmak 2016), which addresses research
questions related to affording robots with the ability
of accounting for social considerations when operating
close to humans. Such questions often require a deeper
understanding of human–human interactions and the
development of mathematical models describing them.
In this paper, which is part of the AAAI New Faculty

Highlights Program, I discuss my prior work on social
robot navigation, highlighting how insights from human
factors led to the development of mathematical models,
algorithms, and systems enabling smoother human–robot
interactions. I start by discussing the coupling of human
and robot motion in densely crowded domains, and
describe a mathematical representation that formalizes it.
Then, I emphasize the value of understanding the robot’s
operation domain, which may empower even simple
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models to enable robust performance. Acknowledging that
even the most robust algorithms will experience failures, I
discuss practical ways in which a robot may seek human
help frombystanders to return to operation. Finally, I high-
light the sensitivity of users to robot motion, and discuss
how motion could be used to signal important internal
robot states and capabilities, ensuring informed users’
expectations. I close with open questions and direction for
future development.

FORMALIZING THE HUMAN–ROBOT
MOTION COUPLING

Social order in pedestrian navigation relies on a form of
cooperation: pedestrians assume a shared responsibility
in resolving conflicts and ensuring safety and comfort of
each other as they navigate crowded spaces. Wolfinger
(1995) described this protocol as a “pedestrian bargain,”
a negotiation that takes place under two social rules:
pedestrians must navigate competently and they must trust
that copresent others do the same. This negotiation takes
place through a tight connection between perception and
action (Warren 2006) at the core of which is a subtle infor-
mation exchange leveraging multiple modalities such as
body posture, eye gaze, and gestures.
How do we describe this process to a robot? Prior work

has leveraged the extraction of domain-specific crowd
motion patterns (Ziebart et al. 2009), the goal-directedness
of human behavior (Trautman et al. 2015), and a bal-
ance between continuous and discrete decision-making
rules that humans employ when navigating in crowded
spaces (Kretzschmar et al. 2016). Building on this prior
work, we are inspired by psychology studies highlight-
ing the tendency of humans to attribute goals to observed
actions of others (Csibra and Gergely 2007). In crowd
navigation, the notion of a goal is not well defined. A
pedestrian’s exact destination is not very relevant to a
nearby pedestrian in the moment of handling a naviga-
tional conflict leading to a possible collision. Our insight
is that the intent over a direction of passing is much more
relevant, and being able to read it quickly may reduce
human cognitive load and improve human performance in
collaborative tasks (Carton, Olszowy, and Wollherr 2016).
In crowded environments, the robot’s directionality of
passing is coupled in space and time with the respective
passing directionality of other pedestrians. We formalize
this coupling using tools from topology.
A formalism of passing. Humans intuitively under-

stand the process of passing another pedestrian as a
mechanism for resolving a potential conflict. Typically, this
amounts to making a decision on whether to move to the
left, right, before, or after another pedestrian. Such deci-

F IGURE 1 Honda’s experimental ballbot (Honda 2019)
navigates next to three users in our lab experiment (Mavrogiannis,
Balasubramanian et al. 2023).

F IGURE 2 Navigating an uncontrolled intersection by
reasoning about topological interactions (Roh et al. 2020).

sions have topological signatures that can be identified
using topological invariants (Berger 2001). Based on this
idea, we described a formalism of passing between two
agents as a pairwise winding number (Mavrogiannis, Bal-
asubramanian et al. 2023), an invariant that corresponds
to the signed number of times that a pair of pedestrians
encircle each other. The absolute value of this number rep-
resents the passing progresswhereas its sign represents the
passing side. Based on this representation, we designed a
cost function that whenminimized results in actions expe-
diting pairwise passing maneuvers. This insight has been
the foundation for the development of a family of reactive
crowdnavigation controllers thatmonitor and expedite the
process of passing other agents in crowded scenes (Mavro-
giannis et al. 2022; Mavrogiannis, Balasubramanian et al.
2023) (see Figure 1) and driving environments (Roh et al.
2020) (see Figure 2).
Topological braids. The idea of passing can be gener-

alized to environments with multiple agents. Each passing
leaves a signature that can be symbolically represented as a
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F IGURE 3 Presentation of the braid group, 𝐵𝑛. The group can be generated by the 𝑛 − 1 elements shown above, called generators (and
their inverses), using an operation called composition.

F IGURE 4 Crossing an uncontrolled intersection by reasoning
about the topology of the spatiotemporal interaction among
agents (Mavrogiannis, DeCastro, and Srinivasa 2023). At time 𝑡,
given state history Ξ, the ego agent (red), following path 𝜏1, predicts
the topology 𝛽 of the unfolding multiagent interaction.

topological braid (Birman 1975). Geometrically, a braid is a
collection of strings (called strands) anchored between two
planes (Thiffeault 2010). The set of all braids on 𝑛 strands,
along with a composition operation forms the braid group
on 𝑛-strands. The group can be generated via composi-
tion of the generators shown in Figure 3. We have used
braids as primitives describing the coupling between the
motion of the robot and other agents over space and time
(see Figure 4). In that sense, a braid is a representative of
a strategy that a set of agents engage to pass each other on
their way to their destinations (Mavrogiannis and Knep-
per 2019). By reasoning about the probability over a set
of relevant braids, a robot may make navigation decisions
without requiring detailed predictions about themotion of
other agents. We have explored this idea in the context of
crowd navigation (Mavrogiannis and Knepper 2021) and

autonomous driving (Mavrogiannis, DeCastro, and Srini-
vasa 2023), demonstrating practical performance across a
series of challenging scenes.
Grouping. A practical way that humans employ to nav-

igate in densely crowded scenes (e.g., the train station of
Shinjuku or the crossing of Shibuya in Tokyo) is to detect
groups of others and follow them, rather thanmaking indi-
vidual predictions about each of them. Gestalt theories
from psychology (Koffka 1935) suggest that organisms tend
to perceive and process formations of entities, rather than
individual components. Inspired by this idea, we devel-
oped a mechanism that first clusters similarly navigating
humans into groups (Wang and Steinfeld 2020) and then
outputs a prediction of the social space that each group
would occupy in the near future. We demonstrated that
based on such predictions, a model predictive controller
could smoothly navigate through a crowd while avoid-
ing separating groups of conavigating pedestrians (Wang,
Mavrogiannis, and Steinfeld 2022).

ROBUSTMOBILITY DOES NOT ALWAYS
REQUIRE COMPLEXMODELS

A common recent paradigm in social robot navigation
involves the use of deep neural architectures as tools for
high-fidelity humanmotion prediction. While these archi-
tectures exhibit impressive performance on offline bench-
marks (Rudenko et al. 2020), their poor generalization
to novel situations, and their limited interpretability call
for alternative approacheswhen considering safety-critical
applications like deployments close to humans. Motivated
by such observations and by similar findings from the
motion-tracking community (Schöller et al. 2020), we have
been exploring the promises and limitations of simpler,
domain-specific models for navigation in crowded spaces.
Coupled with the appropriate representations of the
coupling between human and robot motion (Mavrogian-
nis, Balasubramanian et al. 2023), our insight is that these
models can provide a foundation of performance that can
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F IGURE 5 Our Kuri robot wandered a 28,000 ft2 floor for 4 days with minimal human help (Nanavati et al. 2022). (a) Kuri’s coverage of
the building floor. (b) Photos of Kuri as it wandered in the environment.

be further finetuned online through repeated interactions
with users and the environment.

Social robot navigation with constant
velocity prediction

Our passing-aware controller (Mavrogiannis, Balasubra-
manian et al. 2023) integrates multi-agent trajectory pre-
diction to produce adaptive navigation performance in
crowded environments. While developing it, we experi-
mentedwith a series of differentmodels by deploying them
on our self-balancing robot platform and subjecting the
robot to a diverse range of crowd conditions in the lab
(see Figure 1).We found that constant velocity (CV) predic-
tion (Poddar, Mavrogiannis, and Srinivasa 2023) performs
comparably to a recent state-of-the-art motion prediction
baseline (S-GAN) (Gupta et al. 2018) across a range of
crowdbehaviors including aggressive or inattentive agents.
While our framework could be further expanded through
online model improvements and adaptation to different
environments and users, its core navigation capabilities
could enable a robust performance threshold during the
initial stages of deployment.

Localization-free field deployment

One of the challenges preventing the smooth prolonged
deployment of mobile robots in complex spaces is the

need for consistently accurate robot localization. Despite
the important advances in simultaneous localization and
mapping (SLAM) (Cadena et al. 2016) over the past few
decades, robots deployed in indoor environments are still
prone to delocalization, which may require impractical
workspace engineering and extensive human interven-
tions to address.
While localization remains an important skill for

any robot, there is a long-history of highly effective
localization-free systems (Brooks 1986; Kinzer 2009; Ben-
nett 2021). By wandering in space, such systems are
capable of completing a wide range of tasks, especially
coverage-based, such as vacuum cleaning (Bennett 2021)
or patrolling. Inspired by their effectiveness, we devel-
oped a wandering system, which we deployed on a Kuri
robot in our academic building (Nanavati et al. 2022).
Via Lidar and bump-sensor readings, our system gener-
ates a local costmap representing proximity to obstacles.
It fixes the direction of lowest cost and passes it for
execution on a local controller. If the robot gets stuck
due to some obstruction, it updates its costmap to trig-
ger the selection of a new direction. If the robot remains
stuck for a prolonged period, it initiates a recovery pro-
cedure involving rotation in place and backing off. These
behaviors allowed the robot to recover from typical fail-
ure modes such as getting stuck on furniture or trapped
with a tread off of a cliff. Despite its simplicity, this sys-
tem enabled the robot to navigate the massive hallways
of our academic building (area 28,000 ft2) for 4 days
(see Figure 5).
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While alternative tasks involving point-to-point nav-
igation would require a localization system in place,
our system can empower robots with even relatively
weak compute and sensing features to perform practi-
cal coverage tasks. It could also serve as a navigation
mechanism to support data collection for building and
updating environment maps or for refining the robot’s
localization system. Finally, it could serve as a backup nav-
igation system in cases of failure of the main localization
module.

BYSTANDERS CAN ENABLE SCALABLE
ROBOT RECOVERY

When autonomy inevitably fails, human help can be
crucial for robot recovery (Weiss et al. 2010; Chi et al.
2020). Typically, researchers and engineers are responsible
for ensuring continued robot operation during studies
and field deployments. However, this paradigm may
not be scalable: while robots can deliver value on many
important applications, autonomy can be expected to be
brittle and prone to frequent failures. While some of the
failures require high expertise and close attention, many
of the common failures could be addressed with simple
and quick actions (e.g., responding to a robot question,
shaking the robot to get it unstuck from amotion planning
local minimum, pushing the robot to a new location,
moving the robot to its charger). Our insight is that for
such types of failures, bystanders could enable scalable
robot recovery. This insight was discussed in earlier
work (Weiss et al. 2010; Rosenthal, Biswas, and Veloso
2010; Rosenthal, Veloso, and Dey 2011; Thomason et al.
2019) but also motivated by our experience deploying
Kuri (Nanavati et al. 2022) in our academic building for 4
days, as part of a user study.

Extended operation via human help

Our study with Kuri involved the robot wandering the
2nd floor of the Gates Center at the University of Wash-
ington (approximately 28,000 ft2), taking pictures of its
surroundings and asking in real-time users for feedback
through a chatbot application deployed in a department-
wide digital workspace (Slack) (Nanavati et al. 2022).
To ensure good coverage of the possible artistic themes
present in the environments, the robot needed to keep
running throughout the workday. Thus, we expanded
the chatbot to message the research team when it would
get physically stuck or when it would be low on battery,
and added a simple diagnostic tool streaming Kuri’s front

camera feed. In case, something was wrong, a researcher
would attend to the matter and put the robot back to
operation. These simple monitoring tools—in conjunction
with the localization-free system discussed in the previous
section—enabled the robot to achieve a substantial cov-
erage of the floor (see Figure 5a). Overall, the researchers
did not spend more than 30’ helping the robot over the
4 full days (32 h) of the study, illustrating the practicality
of enabling continued robot operation through periodical,
nontechnical human help. Broadening this idea, we
envision that with the right human–robot communica-
tion interface (e.g., dialog, display, motion) robots could
solicit and leverage human help from bystanders when
necessary to keep delivering a productive performance for
prolonged periods.

Effectively soliciting bystander help

Soliciting help from a bystander is different than soliciting
help from a researcher dedicated to a study or engineer-
ing goal: a bystander typically has no clear incentive to
help the robot. Thus, it is important for the robot to
reason about bystanders’ internal states and context. For
instance, a robot that asks for help too often or at thewrong
times might end up annoying users and quickly stop get-
ting help from them. Considering an office environment
setting, we developed a system that plans effective help
requests based on past interactions with users (Nanavati
et al. 2021). We instantiated this setting in a virtual world
where a delivery robot is tasked with visiting offices to
deliver mail while a human worker performs computer-
repair tasks in the same space.Wemodeled the robot’s task
as a Bayes-Adaptive Markov Decision Process (BAMDP)
where the robot’s goal, expressed in its reward function,
is to maximize the number of offices it visits while min-
imizing the number of human help requests it makes.
The transition function returns the probability of the
user helping given contextual factors (i.e., the human’s—
assumed observed—busyness and the frequency of past
help requests) and individual factors (i.e., the user’s latent
helpfulness, estimated from past interactions with them).
The model was estimated using Generalized Linear Mixed
Models (GLMM) regression from a dataset collected in
a virtual office environment, created using the Phaser3
framework (see Figure 6). Through an evaluation user
study, we found that our system, integrating both indi-
vidual and contextual factors significantly outperformed
baseline systems (using helpmodels using either only con-
textual or only individual factors) in terms of accrued
rewards, while managing to generate more effective help
requests.
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F IGURE 6 A user performs tasks in our virtual office
environment while a robot periodically asks them for help. In this
environment, we deployed and tested our system for planning
effective human help requests (Nanavati et al. 2021).

ROBOTMOTION CAN ADJUST USER
EXPECTATIONS

While robots are increasingly entering homes, airports,
and streets, users and bystanders often have limitedmental
models about how robots make decisions. Naturally, users
tend to make attributions—often anthropomorphic—
mapping robot behavior to possible robot capabilities,
intentions, or internal states (Sung et al. 2007). Robots
driven by purely functional objectives may complete their
tasks but while doing so, they may produce behaviors that
confuse users or mislead them about the robot’s capabili-
ties and incentives. Prior work has shown that integrating
models of human inference into motion planning may
enable an observer to guess the robot’s goal (Dragan
and Srinivasa 2014), the robot’s inability to complete its
task (Kwon, Huang, and Dragan 2018), or aspects of style
and attitude (Knight and Simmons 2016). However, as the
robot operates in the presence of humans, its behaviorswill
also communicate global, long-term behavioral attributes
about its decision making mechanism, incentives, and
internal states. By managing the types of attributions that
a robot elicits from observers as it completes a task, it may
manage users’ expectations, and shape their impressions
as desired.

Understanding users’ impressions of robot
motion

To study human impressions of different robot naviga-
tion strategies, we developed a fictional factory setting

F IGURE 7 Benchmarking social robot navigation in the
lab (Mavrogiannis et al. 2022). The setup comprises a telepresence
robot and a set of six easels representing machines in a fictional
factory workspace. Three participants, wearing tracking helmets
navigate between stations to perform fictional maintenance tasks on
the machines.

mockup in the lab, (Figure 7) where three users navi-
gated between a set of machines to perform maintenance
tasks while one robot was moving around inspecting their
work (Mavrogiannis et al. 2022). This setting allowed
us to motivate complex navigation encounters between
the users and the robot while ensuring natural human
walking. Considering a within-subjects design where con-
ditions represented navigation strategies, we compared
users’ performance and correlated it with their self-
reported impressions. A highlight of our findings was
that our algorithm (Social MomentumMavrogiannis et al.
2022, an algorithm designed to generate legible motion
in multiagent domains) enabled users to navigate with
lower accelerations next to our robot. This was reflected
in their open-form responses in which they often noted
that our robot was not noticeable, whereas baselines
elicited responses referring to violations of personal space
or unpredictability of robot motion. The coding scheme
used to analyze users’ open-form responses (see Figure 8)
is indicative of the range of human impressions when
interacting closely with mobile robots.

Shaping users’ impressions via robot
motion

In the previous work, user impressions were a byproduct
of robot navigation strategies but not explicitly accounted
for. To enable robots to control for the types and intensi-
ties of attributions they broadcast to human observers, we
developed a data-driven methodology for mapping robot
motion to attributions (Walker et al. 2021).
Considering a coverage navigation task (e.g., vacuum-

cleaning robot) in a virtual home environment, we asked
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F IGURE 8 Coding scheme used to analyze users’ impressions during robot navigation experiments in the lab (Mavrogiannis et al. 2022).

users to rate a wide range of robot behaviors (Bartneck
et al. 2009). Through a factor analysis, we extracted a
space of attributions that users typically made; these were
related to Competence, Curiosity, and Brokenness. Through
an active-learningmethodology, we guided additional data
collection steps that enabled us to train probabilistic mod-
els (Mixture Density Networks) mapping robot motion to
attributions that an observer would make to describe it.
Using these models, we developed a trajectory optimiza-
tion framework that balanced between the task-related
objective of coverage and the communicative objective
of eliciting a desired attribution from the user. Through
an online evaluation user study instantiated in Amazon
Mechanical Turk, we demonstrated that our framework
was able to autonomously generate robot motion elicit-
ing desired attributions of desired intensity from users
(see Figure 9). Our complete framework is visualized in
Figure 10.

DISCUSSION

Prepared in the context of the AAAI New Faculty High-
lights Program, this article is a summary of past work
conducted by myself and collaborators in developing the-
ory, models, and systems targeting the problem of robot
navigation in crowded environments. The topics discussed
build a bridge between the classical robot autonomy stack
with social sciences and human factors in an effort to
lead the community towards the development of robots
with a greater human awareness. The insights extracted
from our studies are meant to support the deployment
of interactive mobile robots in indoor environments by

F IGURE 9 Robot trajectories that communicate desired
attributions generated by our trajectory optimization
framework (Walker et al. 2021). Columns indicate the type of
attribution and rows indicate the intensity of the attribution.

guiding users through a path towards satisfaction (Wise
2018) and acceptance (Davis 1989; Beer et al. 2011) as
robots continue to improve through lifelong interactions
with their environment (Thrun 1994). However, many
additional considerations must be made to ensure safe,
smooth, and effective mobile robot deployments involving
close-interaction settings:
Safety. Crucially, when interacting with users, it is

important to develop safety assurances for the user, espe-
cially as the robot learns. There is an extensive body of
work on approaches that directly address aspects of safety
in human–robot interaction (Lasota, Fong, and Shah 2017)
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F IGURE 10 Generating robot motion that communicates desired behavioral attributes (Walker et al. 2021). From left to right: user
responses to robot trajectories are first analyzed to extract salient features and attributions; then they are used to train a model that
probabilistically maps robot trajectories to human attributions; the acquired model is integrated into an optimizer to generate robot
trajectories that elicit a desired attribution.

and safe reinforcement learning (Berkenkamp et al. 2017)
that is relevant for real-world deployments of continually
learning robots.
Imperfect user feedback. While bystanders can be an

effective source of feedback for lifelong learning robots,
it is important to account for the fact that their feed-
back will often be imperfect and even inaccurate. Recent
work on the development of interactive reinforcement
learning could be applicable to enable robots to reason
about the quality of human feedback (Kessler Faulkner,
Schaertl Short, and Thomaz 2020).
Social awareness. Understanding and reacting to the

dynamic social context of a complex environment like a
pedestrian domain, a warehouse, or a hospital remains
an open challenge. While aspects like proxemics have
been increasingly integrated in the design of naviga-
tion algorithms (Kirby 2010), additional considerations
must be made including cultural and individual adap-
tation, and accommodation of the requirements of the
deployment domain.
Benchmarking. It is important that baseline policies

deployed in critical real-world domains are already suffi-
ciently advanced before interacting with real users. Doing
so requires mature validation methodologies that cap-
ture critical aspects of real-world interaction. While there
have been efforts towards formalizing protocols for the
validation of social navigation policies (Stratton, Hauser,
and Mavrogiannis 2024), additional research is required
to develop realistic simulators, evaluation criteria, and
benchmark experiments design of realistic simulators but

also the definition of benchmark experiments (Mavrogian-
nis, Baldini et al. 2023).
Technological challenges. Many technological limi-

tations get in the way of smooth robot deployments. For
instance, despite the maturity of perception approaches
for localization and people tracking, robots frequently
get delocalized and errors in human pose estimates may
give rise to unsafe maneuvers that are challenging to
handle. Finally, there are several robot design challenges
to be addressed, including decisions on robot kinemat-
ics/dynamics, degrees of freedom, and even anthropomor-
phism.
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