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Abstract— We focus on collaborative manipulation with a team
of car-like robot pushers. Pushing can be a practical manipulation
strategy for rearranging large, heavy, or unstructured objects
without needing grippers with high design complexity and
cost. Prior work has focused on simplified problem instances,
including prehensile manipulation using grippers, and pushing
with holonomic robots. However, real-world applications of object
rearrangement in construction, mining, or warehouses motivate
the need to support manipulation of diverse objects and supply
higher torques. Our key insight is to leverage nonprehensile
manipulation to accommodate a wide range of object geometries,
and, use car-like robot pushers to apply significantly higher
torque than holonomic robots of comparable cost. The non-
holonomic constraints imposed by car kinematics in conjunction
with pushing-based constraints required for object controllability
complicate planning, control, and coordination. To this end, we
develop an architecture for planning the motion of multiple car-
like robots to produce a desired object rearrangement. Given a
goal pose for the object, we first extract a trajectory (sequence
of twists) taking the object from its current pose to the goal.
For each object twist, we solve an optimization instance to
optimally distribute pushing forces and contact configurations
among robots. We formulate the optimization as a quadratic
programming problem and solve to minimize the magnitude of
forces required for each object twist. Each robot executes the
sequence of pushing forces that it was assigned in a decentralized
fashion using a model predictive controller. Preliminary results
validate our approach on four pushing scenarios each involving
the rearrangement of a long rectangular object by two car-like
robots. Ongoing work involves the evaluation of our architecture
on hardware, using a team of 1/10th scale robot racecars.

Index Terms—Pushing, Planar Manipulation, Multi-Robot Sys-
tems, Model-Based Optimization

I. INTRODUCTION

Autonomous collaborative manipulation has the potential
to transform how robots interact with large or heavy objects
in environments like warehouses, construction sites, and fac-
tories. While prior approaches rely on holonomic robots or
complex grippers, car-like robots offer a compelling alternative
due to their higher torque and simpler mechanical design.
Nonprehensile manipulation through planar pushing presents
a robust strategy for object rearrangement, particularly for
objects that are irregularly shaped, heavy, or too large for
conventional grippers [1, 3, 6].

Mechanics of planar pushing: Mason (1982) and Peshkin
and Sanderson (1988) develop the mechanics of pushing under
quasistatic conditions where frictional forces on the object due
to the surface µs quickly damp out any kinetic energy of the
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Fig. 1. Example setup of two car-like robots collaboratively pushing a long
rectangular object along a curved path.

object. Goyal et al. (1991) define the convex boundary of fric-
tional wrenches during contact as the limit surface. With this
assumption, Lynch and Mason (1996) develop conditions for a
mobile robot pushing an object with line-contact using stable
pushes i.e. pushes without relative sliding [14]. Prior work has
employed quasistatic stable pushing models to perform planar
object rearrangement tasks [1, 19]. In our work, we devise the
conditions for planar quasistatic pushing with multiple mobile
robots using only stable pushes.

Model-based planning and control: Model-based optimiza-
tion and data-driven approaches particularly reinforcement
learning-based methods have been widely adopted for contact-
rich pushing scenarios. Several works formulate the problem
of finding pushing contacts and trajectories/forces as con-
straints of an optimization problem in single [2, 11, 13] or
multi-robot scenarios [5, 12, 20] with centralized controllers.
In contrast, prior works with decentralized multi-robot control
define control laws based on pushing models where robots
may take turns to execute pushing actions [16], follow a
leader robot [21] or move as a formation in a swarm [4].
Although these works made great leaps in development of
push manipulation abilities, their scope was limited to either
small holonomic robots or manipulator arms. These works can



Fig. 2. System Architecture: Given an object start and goal pose, and N robots, we find a valid plan for pushing the object as a sequence of object twists.
For each object twist, we distribute pushing forces among the robots. Finally, robots track a desired velocity profile using a closed loop multi-robot controller.

Fig. 3. Various configurations with two pusher robots (0.1m×0.02m) in
multiple pushing contact modes with a large rectangular object (0.8m×0.1m).

approximate pushing contact as point-contact due to the small
size of the end-effectors/robots compared to the object. In
contrast, our work leverages car-like robots to deliver higher
torque compared to holonomic robots of comparable cost.
This, along with the front bumper of cars forming a line-
contact, enables manipulation of objects that are too large,
heavy or irregular in shape for point-contact pushing with
holonomic robots.

Nonprehensile manipulation of large objects: Recent works
highlight growing development of robots for manipulation of
large objects. In [8], hierarchical reinforcement learning-based
methods are used for obstacle-aware multi-robot manipulation
of a large object by quadrupedal robots. Also, in [22] a
differential-drive mobile robot navigates through a region
cluttered with heavy movable obstacles using a pushing model
from a physics engine to efficiently sample rollouts of their
controller. Our work is a step towards collaborative non-
prehensile manipulation where this reasoning is developed
for multiple car-like robots. Our framework decomposes the
collaborative pushing problem into three components: object
motion planning, optimal force distribution among multiple
robots, and low-level robot control. This approach enables
manipulation of large objects with kinematically constrained
car-like robots.

II. APPROACH

We formulate the problem for pushing an object in a planar
workspace W ⊂ SE(2) using two non-holonomic car-like
robots or pushers. The 3D object has a mass M and moment of
inertia I , a low center-of-gravity such that o = (x, y, θ) ∈W
represents the object pose, and O represents the boundary of
the object. We consider objects that are too heavy for a single

robot but sufficiently large to allow multiple robots to push
simultaneously. Although there are numerous configurations
for pushing the object with car-like pusher robots as illustrated
in Fig 3, for the scope of this work we focus on Fig 3-A.
In configuration A, robots execute stable pushes maintaining
line-contact with the object.

We represent the state of the robots as p1,p2 ∈ W , the
robot follows rear-axle simple-car kinematics:

ṗi = [sicos(θi), sisin(θi), sitan(ϕi)/L] (1)

where ui is the control input, si is the speed, ϕi is the steering
angle, and L is the wheelbase of the robots with i ∈ {1, 2}.
Additionally, we assume uniform pressure distribution across
the object and uniform frictional properties, where µs and µc

give the friction between the object and the support ground,
and the object and the robot respectively.

A. Object Motion Planner

The path of the object consists of a sequence of stable
pushes, and the space of stable pushing directions imposes
non-holonomic constraints on the motion of the object[14]. We
use a hybrid-A∗ planner to construct stable pushing paths for
the object among obstacles. Our planner generates a Dubins
Curve[7] as the shortest path between the start and goal loca-
tion using L, R, and S primitives corresponding respectively
to left, right, and straight motion. The left and right motion
primitives are calculated using a minimum turning radius that
ensures stable pushing under the quasistatic assumption similar
to the planner in [1].

Consider robots p1,p2 ∈W pushing an object o ∈W with
a constant velocity. Tang et al. (2024) prove that any object
transformation with a constant velocity can be represented
as an arc transformation. Let the turning radius of the arc
be Robject as illustrated in Fig. 4, and the contact lines be
represented by r1, r2 ∈ W as the coordinates of their mid-
points. Since each car performs stable pushes, the radius of
curvature of each car must be larger than Rcar

min. Here, Rcar
min is

the minimum radius for sticking contact with stable pushing.
Thus, the minimum radius of curvature for the object must
be offset such that each robot can perform stable pushes, it is
given by:

Robject
min = max(Rcar

min + r1 .̂ı−o.̂ı, Rcar
min + r2 .̂ı−o.̂ı) (2)



Fig. 4. The object at o = (x, y, θ) with the desired object twist (v∗x, v
∗
y , ω

∗)
traces an arc of radius Robject while robots apply forces f1 and f2 through
contacts at r1 and r2 respectively.

where ı̂ is the unit vector along the X-axis. For the scope of
this work, we use the farthest contact point max(ri .̂ı − o.̂ı)
to find the Robject

min that can allow robots anywhere along the
edge of the object to complete that object transformation.

B. Force Distribution Optimization

For each desired object twist ȯ∗ = (vx, vy, ω) in the planned
trajectory, we determine how to optimally distribute pushing
forces among the robots. We formulate this as a Mixed-Integer
Quadratically Constrained Programming (MIQCP) problem.
Robots are allowed to push with their flat bumpers anywhere
on the perimeter of the object, given that the line-contact does
not intersect with a corner point of the object (to maintain
configuration A from Fig. 3), or collide with another robot.

1) Friction Constraints: For two robots with sticking line-
contacts, the configuration is defined as: ξ ≜ r1r2 Further,
for the i-th robot where i ∈ {1, 2}, the force fi applied
by the robot, can be decomposed into normal and tangential
components: fi ≜ fni + f ti ≜ fn

i ni + f t
i ti where ni and ti

represent the unit vectors and fn
i and f t

i represent the frictional
force magnitudes in the normal and tangential directions
respectively. With the following constraints due to Coulomb’s
law of friction for sticking contact:

0 ≤ fn
i ≤ fi,max; 0 ≤ |f t

i | ≤ µsf
n
i (3)

2) Generalized force for two robots: The total force applied
by the two robots can be represented by Fξ as:

Fξ ≜ (Fn
ξ ,F

t
ξ) ≜ (fn

1 , f
n
2 , f

t
1, f

t
2) ∈ R4

3) Object Dynamics: The combined generalized force ap-
plied on the object is:

qξ ≜ (fx, fy,m)

where:

(fx, fy) = f1 + f2

m = (r1 − o)× f1 + (r2 − o)× f2

In matrix form qξ = JFξ where J = ∇Fξ
qξ is the Jacobian.

4) Limit Surface Model: Under the quasistatic assumption,
the total generalized force qξ is constrained on a limit surface
approximated by an ellipsoid:

(fx/fmax)
2 + (fy/fmax)

2 + (m/mmax)
2 = 1 (4)

Following the approach from the limit surface theory, the
gradient of the limit surface is proportional to the desired
object velocity:

∇L(qξ) = λȯ∗ (5)

where λ > 0 is a scaling factor and:

∇L(qξ) =
(

2fx
f2
max

,
2fy
f2
max

,
2m

m2
max

)

We also constrain the motion of the robots to their respective
contact points, ensuring the motion of the contact point aligns
with the kinematically constrained motion of the robot.
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 , ∀i ∈ {1, 2} (6)

5) Stable Pushing Conditions: A stable pushing trajectory
exists if the required generalized force qξ lies within the
achievable force set Qξ given the constraints on the robots’
individual forces. In the objective function, we minimize a
weighted sum of the L1-norm along with the L∞-norm of
the individual force magnitudes Fξ. We thus minimize the
total magnitude of forces applied on the object, and ensure
that the pushing forces are distributed between the robots.

C. Multi-Robot Controller

Given pushing forces and pushing poses of robots for a
desired object twist, we extract a velocity-profile for the
motion of each robot. Under quasistatic conditions, the robots
exert these pushing forces by tracking desired velocities for
the extracted trajectory. We use a model predictive controller
to ensure that robots maintain their desired velocities, thereby
performing the object twist. For the scope of this work, the
controller accounts for kinematic constraints and the robots
maintain their velocities relative to each other, the controller
does not account for motion of the object in the controller
within its rollouts.

We assume the robots start in stable-pushing contact with
the object at the start pose. When the robots successfully com-
plete pushing the object along a desired twist, they reposition
to pushing positions for the next object twist. We use car-like
conflict based search (CL-CBS) [23] to plan the repositioning
paths of the two robots. Our controller thus, switches between
two modes of contact: stable pushing and repositioning. Each
robot uses a Model Predictive Path Integral (MPPI) [24]
controller that optimizes control inputs over a receding horizon
to maintain its pushing configuration relative to the other robot.
In future work, we aim to use an approximate pushing model
to increase robustness and allow recovery from failures while
pushing. We implement this path tracking model-predictive
controller for each robot using the pytorch_mppi library.

III. RESULTS

We demonstrate our framework on MuSHR [18], an open-
source 1/10th-scale mobile robot racecar, augmented with a
3D-printed flat bumper for pushing in a Mujoco simulation
environment shown in Fig. 5. Our test cases include the four



Fig. 5. Two MuSHR robot cars pushing a large object in a Mujoco simulation
environment.

TABLE I
COMPARISON OF MEAN ERROR, STANDARD ERROR, AND PATH LENGTH

ACROSS DIFFERENT TEST CASES OVER 100 TRIALS.

Test Case Mean Error (m) Std Error (m) Path Length (m)

1 0.004 0.0016 4
2 -0.057 0.009 3.92
3 0.129 0.0045 9.84
4 -0.086 0.0039 7.84

pushing trajectories in Fig. 6 where robots track a desired
object trajectory for an object of size 0.1m×0.8m×0.1m, we
present the average metrics over 100 trials in Table I. The met-
rics show that error accumulation correlates with path length
and complexity. The longer paths in cases 3 and 4 exhibit
cumulative errors as robots execute turns while maintaining
pushing contact. Case 3 has the largest path length, resulting
in the largest error. Additionally, Case 2 has a large mean
error given its small path length because of sliding motion
observed while rotating the object. The object slides outwards
during the transformation, resulting in the negative bias of the
mean. Despite this, the low standard error across all test cases
demonstrates the strengths of leveraging stable pushing even
for extended trajectories.

IV. DISCUSSION

In the future, we aim to explore additional pushing configu-
rations, including the ones illustrated in Fig. 3. These pushing
configurations use a diverse range of contact-rich interactions
with corner contacts, opposing forces and caging strategies
[9] which, in turn, should help in finding more cost-effective
object maneuvers. We also aim to demonstrate these pushing
configurations with more than two robots.

Additionally, we plan to develop an approximate analytical
pushing model to reduce error accumulation along longer

Fig. 6. Start (blue) and goal (green) positions of four test cases with
intermediate transitions illustrated.

pushing paths. In this work, we observe higher errors along
the longer trajectories or larger number of segments. However,
when using an approximate model to predict the state of the
pushed object in the controller, we can enable robots to take
corrective measures while pushing and improve pushing ac-
curacy. Ongoing work involves the development of analytical
and learning-based models for pushing with car-like robots.

Lastly, we plan to demonstrate our methods on hardware
using 1/10th scale MuSHR robot racecars to identify and
address practical challenges not captured in simulation.
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