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Characterizing the Complexity of Social Robot
Navigation Scenarios

Andrew Stratton1, Kris Hauser2, and Christoforos Mavrogiannis1

Abstract—Social robot navigation algorithms are often demon-
strated in overly simplified scenarios, prohibiting the extraction
of practical insights about their relevance to real-world domains.
Our key insight is that an understanding of the inherent complex-
ity of a social robot navigation scenario could help characterize
the limitations of existing navigation algorithms and provide
actionable directions for improvement. Through an exploration
of recent literature, we identify a series of factors contributing to
the complexity of a scenario, disambiguating between contextual
and robot-related ones. We then conduct a simulation study
investigating how manipulations of contextual factors impact the
performance of a variety of navigation algorithms. We find that
dense and narrow environments correlate most strongly with
performance drops, while the heterogeneity of agent policies
and directionality of interactions have a less pronounced effect.
Our findings motivate a shift towards developing and testing
algorithms under higher-complexity settings.

Index Terms—Human-Aware Motion Planning, Human-
Centered Robotics, Autonomous Vehicle Navigation.

I. INTRODUCTION

RECENT surveys on social robot navigation [1–3] have
highlighted that strong assumptions in typical evaluation

practices prohibit transfer to real-world domains. Much of the
literature considers sparse, slowly navigating human crowds,
giving rise to non-interactive human-robot encounters that are
easily handled by classical navigation algorithms. Hence, the
benefits of many modern approaches are not transparent. This
underscores the need for standardized benchmarks; however,
defining benchmarks for this domain requires community
consensus over appropriate experimental design. This would
need to capture several aspects, such as the spatial arrangement
and roles of agents, the briefing that human users receive
before the experiment, robot design specifications, metrics
evaluating robot performance and human impressions, etc.

In this paper we argue that to establish effective benchmarks
for social robot navigation, the research community should
better understand and control the dimensions of problem
Complexity. Clear definitions of Complexity in fields like the-
oretical computer science [4], learning theory [5], and motion
planning [6] enable a characterization of limitations in existing
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Fig. 1: Humans can seamlessly handle a wide range of crowd navigation
scenarios [8]. In contrast, social robot navigation algorithms struggle to handle
scenarios with realistic levels of Complexity [9]. In this paper, we show that
high-Complexity scenarios are underexplored in the literature. We demonstrate
principal factors contributing to poor navigation performance, and argue for
the definition of benchmarks that account for their impact.

algorithms and motivate future research directions. However,
robotics is a synthetic science [7], combining many elements
from other fields, which makes it harder to formulate similarly
succinct and relevant definitions for Complexity. Social robot
navigation [1] is no exception to this complication, as it lies at
the intersection of multiple research areas, including motion
planning, machine learning, control, and human modeling,
among others. In this work, we approach Complexity through
an empirical lens: a dimension of Complexity is a factor that
causes a drop in Performance of an automated method (Fig. 1).
Here, Performance is measured with respect to relevant criteria
accepted by the community [1].

To instantiate our framework, we review the evaluation prac-
tices of recent literature and extract a set of factors contributing
to the Complexity of a social robot navigation scenario,
distinguishing between contextual and robot-related factors.
We then conduct an extensive simulated study to understand
how robot-independent, contextual factors impact algorithmic
performance. We find that Density and Environment Geometry
have the strongest correlation with performance decline across
a wide range of algorithms. We also find that the scenarios
most frequently explored in prior work tend to be of lower
Complexity, and allow simple, reactive methods to perform
effectively. Our findings underscore the need for algorithms
that explicitly account for diverse, high-Complexity scenarios,
and benchmarks that explore performance in scenarios that
have high Complexity across multiple factors.

II. RELATED WORK

Recent surveys on social robot navigation [1–3, 10] empha-
size the need for a standardization of benchmarking practices.
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Mavrogiannis et al. [1] observe the lack of rigorous statistical
characterization of robot performance and human impressions,
and emphasize the need for better repeatability. Francis et al.
[2] collect a list of principles that a social navigation system
should take into account, and propose guidelines for evaluating
them. Gao and Huang [10] delve into the evaluation method-
ologies adopted by researchers and practitioners. Singamaneni
et al. [3] provide a taxonomy of the literature, capturing as-
pects such as the robot type, the algorithmic approaches used,
and the social navigation context. This work complements
prior surveys by analyzing the Complexity of the scenarios
employed in the evaluation practices of published approaches.
By understanding the explored territory of Complexity, we
provide directions for integrating more Complex settings in
benchmarking practices that more closely resemble what a
robot would experience in the real world.

A major challenge in standardizing benchmarking in social
navigation lies in the design of experiments, and specifically in
balancing repeatability and emergence of natural interactions.
Mavrogiannis et al. [1] classify real-world experiments into
three classes: demonstrations [11–13], lab studies [14–18], and
field studies [9, 19, 20], advocating for the extraction of statis-
tical insights across social navigation experiments. However,
the cost of conducting real-world experiments has motivated
experimentation within virtual environments [21]. Borrowing
tools from graphics and crowd simulation [22, 23], several
works have developed photorealistic simulators [21, 24, 25],
while others have focused on finding quantitative metrics that
capture aspects of performance previously only understood
through qualitative metrics [26–28]. However, as demonstrated
by Fraichard and Levesy [29], simulation is often introduced in
evaluation practices with shortcomings. Common assumptions
in simulated evaluations include the robot being invisible
to humans, humans being simulated as homogeneous overly
submissive agents, the scenarios considered being generated
at random, and the scenarios containing no walls or obstacles.
Such assumptions result in surprising observations, such as
that a “blind” robot moving straight can outperform state-
of-the-art agents [1]. Motivated by these observations, we
contribute an experimental design that gives rise to more
realistic crowd conditions by considering the manipulation of
contextual variables including the Environment Geometry, the
agent Policy Mixture, the crowd Directionality, and Density.

Another challenge in designing benchmarks is the lack of
understanding of what makes a social navigation scenario
Complex. In prior work, the crowd Density [1, 9, 30] has often
been used as a proxy for Complexity. However, Density on its
own does not capture the Complexity of the motion coupling
between closely interacting agents. To capture that, metrics
like Path Irregularity [31] and the Topological Complexity
Index [27, 32] quantify aspects of geometric and topological
richness of agents’ interactions. Our work is relevant to these
approaches, however it seeks to extract a more fundamental
understanding of how the parameters defining a social nav-
igation scenario impact its Complexity. We are inspired by
the Complexity definitions of theoretical fields [4–6]. While
our investigation is empirical, we see it as a first step towards
defining a formal representation of Complexity.

III. FACTORS OF COMPLEXITY IN THE LITERATURE

We first identified factors of Complexity in the literature by
investigating benchmarking practices in papers from the ICRA,
IROS, CoRL, and RSS conferences from 2015 to 2024, using
the keywords “social” and “crowd”. Additionally, we reviewed
work cited in recent surveys [1–3, 10]. We studied a variety
of evaluation methodologies and found a helpful breakdown
of the factors characterizing the evaluation of each scenario
could be through two categories: contextual (see Fig. 2) and
robot-related factors. We tabulate the results in Table I.

A. Contextual Factors

By contextual, we refer to factors are robot-agnostic, i.e.
they are related to the environment the robot is deployed in.

Density. Density is often used as a proxy for the Complexity
of a scenario [1, 9, 30]. We report it in the standard form of
agents/m2, although we note this does not account for the
variable size of agents. Wherever a Density was not explicitly
given or computable, we approximated based on supplemental
footage to complete Table I.

Directionality. The directions in which humans encounter
the robot contribute to the difficulty of the collision-avoidance
task [62]. We identified four cases– Passing: Agents move
parallel, paths do not intersect; Crossing: Agents move per-
pendicular, paths intersect; Random: Agent starts and goals
are randomly sampled; Circle Crossing: Agent start and goals
are sampled on opposite sides of the circumference of a circle.

Environment Geometry. We find that most often, evalua-
tions take place in either hallways or medium to large office
rooms, which place no constraints on the agents’ movements.

Policy Mixture. The behavior with which each agent co-
navigates affects the evolution of a scenario. Cooperative
agents assume partial responsibility for collision avoidance,
which simplifies the robot’s task. In contrast, when rushing,
being distracted, or changing intentions, humans may pose
greater challenges to a robot [16]. We found that most real-
world studies instruct participants to navigate cooperatively,
and most simulation-based studies make use of cooperative
crowd simulators like Social Force [23] and ORCA [63].

B. Robot Factors

These factors refer to details of the robot hardware platform,
and include the robot footprint, mass, maximum speed, and
sensing capabilities, among others.

Robot Size. Most recent evaluations use robots with a
smaller form factor than those in previous works, which allows
other agents to maneuver around them more easily.

Maximum Speed. Consistently, the maximum speed of the
robot is much lower than a natural human walking speed [16],
due to hardware or safety constraints. When reviewing supple-
mentary video material, however, we observed that this often
resulted in the humans moving to avoid the robot, while the
robot itself performed little to no socially aware maneuvers.

Kinematics Most often, we see differential drive robots
used in real world experiments. This is seldom matched
in simulation training and testing, in which it is frequently
assumed the robot is holonomic [1, 36, 64].
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TABLE I: Complexity factors in the literature. Directionality: Passing (P), Crossing (C), Circle Crossing (CC), Random (R); Density: Low [0, 0.1), Medium
[0.1, 0.25], High (0.25,∞) agents/m2; Environment: Small room [0, 25), Medium room [25, 100], Large room (100,∞) m2.

Paper Density Directionality Environment Robot Size (mm3) vmax(m/s) Kinematics Sensors Viewpoint

Angelopoulos et al. [33] Low P Hallway 425x480x1210 0.85 DD N/A Egocentric
Bennewitz et al. [34] Low N/A Office 520x520x1180 0.65 N/A Stereo, LIDAR Egocentric
Burgard et al. [20] Medium N/A Museum N/A 0.80 N/A LIDAR Egocentric
Ciou et al. [35] Low P Hallway 381x455x217 1.20 DD LIDAR, RGB-D Egocentric
Chen et al. [36] Medium P, C Hallway N/A N/A DD N/A N/A
Katyal et al. [37] Low P Med. Room 1100x500x610 1.60 Quad Motion Capture Overhead
Kim and Pineau [38] N/A P Med. Room N/A N/A N/A RGB-D Egocentric
Kirby [39] Low P Hallway 520x520x1180 0.70 N/A Laser scanner Egocentric
Liu et al. [13] Medium N/A Med. Room 354x354x420 0.50 DD LIDAR Egocentric
Liu et al. [40] Medium P, C Outdoor N/A N/A DD LIDAR Egocentric
Liu et al. [12] Low P, R Med. Room 354x354x420 0.65 DD RGB-D Egocentric
Lo et al. [18] Low P L. Room N/A 1.50 Omni Motion Capture Overhead
Matsuzaki et al. [41] Medium P, C L. Room N/A 1.20 LIDAR N/A Egocentric
Matsuzaki et al. [42] High P, C L. Room N/A 0.50 N/A N/A N/A
Mavrogiannis et al. [15] Medium P, C Sm. Room N/A 0.75 Omni Motion Capture Overhead
Mavrogiannis et al. [27] Medium P, C Med. Room 508x660x1580 0.83 Omni Motion Capture Overhead
Mun et al. [43] Low P L. Room 354x354x420 0.65 DD LIDAR Egocentric
Mustafa et al. [44] Low P Med. Room 504x430x250 2.00 DD N/A N/A
Nguyen et al. [45] Low P Hallway 810x320x640 4.80 Ackermann LIDAR Egocentric
Oh et al. [46] Low P, C L. Room 504x430x250 2.00 DD LIDAR, Stereo Egocentric
Pacchierotti et al. [17] Low P Hallway N/A 0.60 N/A LIDAR Egocentric
Paez-Granados et al. [47] High P, C Outdoor N/A N/A N/A LIDAR, RGB-D Egocentric
Peddi et al. [48] Medium P Sm. Room 960x793x296 0.50 Omni Motion Capture Overhead
Poddar et al. [16] Medium P, C Sm. Room N/A 1.50 Omni Motion Capture Overhead
Qin et al. [49] Low P, C L. Room N/A 0.85 DD LIDAR Egocentric
Qiu et al. [50] Medium P, C Hallway 354x354x420 0.65 DD LIDAR, RGB-D Egocentric
Sathyamoorthy et al. [51] High N/A Hallway 354x354x420 1.00 DD LIDAR, RGB-D Egocentric
Shiomi et al. [52] N/A N/A L. Room 600x600x1200 0.75 N/A LIDAR Overhead
Silva et al. [53] Low P Med. Room 425x480x1210 0.55 DD Motion Capture Overhead
Singamaneni et al. [54] Low P Doorway 668x668x1640 1.00 N/A LIDAR Egocentric
Tai et al. [11] Low P, C M. Room 281x306x141 0.26 DD LIDAR, RGB-D Egocentric
Thrun et al. [19] Medium N/A Museum N/A 0.70 N/A LIDAR Egocentric
Trautman et al. [9] High P, C Med. Room N/A 0.30 N/A Stereo Overhead
Truong and Ngo [55] Low P Med. Room N/A N/A N/A LIDAR, RGB-D Egocentric
Tsai and Oh [56] Medium P, C Road 990x670x390 1.00 DD LIDAR Egocentric
Wang et al. [57] Medium CC L. Room N/A N/A N/A RGB-D Egocentric
Wang et al. [58] Low CC L. Room N/A N/A N/A RGB-D Egocentric
Xie and Dames [59] Medium N/A Field 354x354x420 0.50 DD LIDAR Egocentric
Yang et al. [60] Low P, R Hallway 700x400x500 3.30 Quad Motion Capture Overhead
Yao et al. [61] Low P, C Hallway 354x354x420 0.65 DD LIDAR, RGB-D Egocentric

Sensors. Most works use limited sensing capabilities, lead-
ing to a more challenging evaluation. We note that some of the
potential negative effects of limited sensing (false detections,
occlusion) are more problematic in scenarios with higher
numbers of pedestrians, and might not be stress-tested in many
of the evaluations we covered.

Viewpoint. We differentiate between overhead, in which
sensors have a bird’s eye view, mitigating issues like occlu-
sions, and egocentric, in which sensors are on the robot.

IV. INVESTIGATING THE COMPLEXITY OF SOCIAL ROBOT
NAVIGATION SCENARIOS

We propose a definition of a Social robot navigation sce-
nario based on parameters that concisely capture the contex-
tual factors in Sec. III. We then describe an experiment design
that investigates the performance of a variety of navigation
algorithms under different scenarios.

A. Social Navigation Scenario

Consider a robot navigating next to n ≥ 1 human agents in a
workspace W ⊆ R2 with a set of static obstacles Wobs ⊆ W .
The robot starts from an initial configuration sR and moves
towards a goal gR by following a policy πR whereas humans
are navigating from their initial configurations si towards their

goals, gi by following a policy πi, i ∈ N ; agents’ goals are
unknown to one another. The robot occupies an area AR ∈ W ,
and each human occupies an area Ai ∈ W . The objective of
the robot is to reach its destination while avoiding collisions
and abiding by social norms. We define a social navigation
scenario as a tuple:

S = (n,AR, A1:n, sR, gR, s1:n, g1:n, π1:n,Wobs) . (1)

We denote by πi the true policy for agent i, capturing the
way they make decisions based on their objectives as well as
behavioral and contextual aspects of their navigation profile.

B. Experiment Design

We design scenarios of varying Complexity by manipulating
each of the factors in Sec. III in isolation.

Scenario configurations. We first define a base scenario Sb

with n = 15, AR, Ai:n = π(0.3)2, sR = (5, 1), gR = (5, 9),
πi:n = ORCA, SFM, vpref = 1.0 m/s, Wobs = {[0, w] ×
[0, l]}c = {[0, 10] × [0, 10]}c; s1:n, g1:n are sampled from
passing and crossing. We then modify a single variable in
each experiment, from low to high intensity:

• Density: {0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35}. We
choose this range following prior work [1, 9].
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(b) Density

(e) Width

(h) Directionality

(k) Policy Mixture

Fig. 2: Left to right: Scenarios of increasing Complexity for each of the
Complexity factors considered (b-k). In the leftmost Directionality figure
green agents are crossing and blue agents are passing, while different colors
represent different policies in Policy Mixture.

• Directionality: {Passing only, crossing only, passing and
crossing, circle crossing, random start/goal}. We found
that prior evaluations frequently involve passing scenarios
with one or two humans, although many papers set up
simultaneous passing and crossing scenarios. We also
find that while circle crossings are frequently used in
simulation to force Complex interactions between several
agents [1, 64–66], they do not appear as often in real robot
evaluations.

• Policy Mixture: {SFM only, ORCA only, Mix 1, Mix
2, Mix 3}, where Mix 1 contains 8 ORCA and 7 SFM
agents, Mix 2 contains 5 ORCA, 5 SFM, 2 CV, 3 Static
agents, and Mix 3 contains 4 ORCA, 4 SFM, 4 CV, 3
Static agents, respectively. We add increasing numbers of
inattentive agents to model Complex real-world scenarios
in which the robot must navigate among both cooperative
and uncooperative agents simultaneously [41].

• Environment Width: {4.5, 4.0, 3.5, 3.0, 2.5, 2.0, 1.5}.
which reflects the reported Width of most hallways
(e.g., [17, 39, 60]) in Table. I.

Fig. 2 illustrates the configurations considered in our study.
Algorithms. We propose to evaluate the change in Com-

plexity of a given scenario using the performance of several

navigation algorithms. Specifically, we employ:
• Relational Graph Learning (RGL) [64]: a reinforcement

learning based approach that models pedestrian interac-
tions using a graph neural network.

• Social GAN Model Predictive Control (MPC-SGAN): An
approach integrating a recent crowd motion prediction
model [67] into an MPC framework, using the approach
and implementation of Poddar et al. [16].

• Constant Velocity Model Predictive Control (MPC-CV):
Identical to MPC-SGAN, but instead using CV motion
predictions for each agent.

• Social GAN Model Predictive Path Integral (MPPI-
SGAN): SGAN integrated into an MPPI controller.

• Reactive Planner (RP): A myopic planner that attempts
to avoid collisions while navigating towards the goal.

• Optimal Reciprocal Collision Avoidance (ORCA) [63]:
A multiagent collision avoidance method that guarantees
collision free movement among ORCA agents.

• Social Forces Model (SFM) [23]: A physics-inspired
model of crowd motion.

• Constant Velocity (CV): An unreactive agent that moves
with constant velocity toward the goal.

Metrics. Based on literature [1, 2, 10], we use the following
metrics for performance, collected from Successful trials:

• Success: The average number of trials in which the ego-
agent reaches its goal without collision.

• Time to goal: The average time to goal across trials.
• Distance to agent: The Minimum Distance to the nearest

other agent during a trial, averaged across trials.
• Path Irregularity [31]: The amount of unnecessary turn-

ing per unit path length, measured in rad
m , calculated as∑

Path
Rotation−Min. rotation needed

Path length .
Hypotheses. We expect that scenarios of higher Complexity

will pose greater navigation challenges, and this will be
reflected in significant performance drops across all algo-
rithms. Additionally, as Density is often used as a proxy for
Complexity as a whole, we anticipate that it will have the
strongest correlation with observed performance drops. Based
on these expectations, We formulate the following hypotheses:

• H1. Increasing the intensity of each of the four Complex-
ity factors (Density, Directionality, Environment Geome-
try, Policy Mixture) independently decreases performance
with respect to (w.r.t.) collected metrics.

• H2. The negative correlation between Complexity and
performance in H1 will be strongest for Density.

C. Implementation Details

We generate 500 scenarios for each condition within each
experiment and report metrics as averages across all 500 trials.
We fix the random seed to ensure each method experiences the
same scenarios. To simulate continuous crowd motion, agents
each have a precomputed sequence of goals sampled according
to the Directionality of the scenario, and begin moving to their
next goal upon reaching their current one. For MPC-SGAN
and MPPI-SGAN, we used a checkpoint pretrained on the
Zara portion of the UCY dataset [68]. RGL was retrained
in 5, 10, and 15 agent scenarios with ORCA, SFM, and
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Fig. 3: Performance of methods across our experiments. Rows indicate experiments and columns correspond to different evaluation metrics. Each point
represents the mean over 500 experiments; shaded regions indicate standard deviation. Mix 1 has 7 SFM and 8 ORCA agents. Mix 2 has 5 SFM, 5 ORCA,
2 CV, and 3 static agents. Mix 3 has 4 SFM, 4 ORCA, 4 CV, 3 static agents.

RGL MPC-SGAN MPC-CV RP CV ORCA SFMMPPI-SGAN
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ORCA/SFM agent policies, however the training only resulted
in a collision-avoiding policy in the 5 ORCA agent setting.
For the ORCA and SFM methods, we used the CrowdNav
default parameter settings. The reactive planner uses the same
action space of Chen et al. [64], and selects the collision free
action that minimizes its distance to the goal in the following
timestep. All methods handle static obstacle collisions by
setting the component of the action in the direction of the
colliding obstacle to 0. For more specific details of the
training procedure for RGL, and parameter settings and tuning
for the MPC and MPPI methods, as well as our enhanced
version of CrowdNav, see our GitHub site at https://github.
com/fluentrobotics/ComplexityNav. Videos of our experiments
can be found at https://youtu.be/-ir12VoSCkY.

D. Results

Fig. 3 summarizes our experimental results, organized by
experiment types (rows) and metrics (columns). Based on this
data, we investigate the validity of our hypotheses:

H1. We find Density has a strong correlation with Success
Rate and Minimum Distance to agent (ρ = −0.878,−0.760,
p < 0.001 using Spearman’s r test), and a moderate correlation
with Average Time (ρ = 0.488, p < 0.001). We also find a
strong correlation between increasing Width and Success Rate
(ρ = 0.641, p < 0.001), and a moderate correlation between
Width and Minimum Distance (ρ = 0.420, p < 0.01). We do
not find any statistically significant correlation with average
Time or Path Irregularity. Regarding Policy Mixture and Direc-
tionality, we find strong and moderate correlations respectively
between intensity and Success Rate (ρ = −0.778,−0.524,
p < 0.002). We see no statistically significant correlation for

https://github.com/fluentrobotics/ComplexityNav
https://github.com/fluentrobotics/ComplexityNav
https://youtu.be/-ir12VoSCkY
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Minimum Distance and Time in either case, and no statistically
significant correlations for Path Irregularity. Thus, we find that
while each factor affects at least one metric, Density and En-
vironment Geometry appear to have the strongest correlation,
giving partial support for H1.

H2. We observe that the correlations between Density and
other collected metrics are all stronger than those of the other
factors. Thus we find support for H2.

E. Analysis

While Density correlates strongest with Complexity, we
see that the Environment Geometry, Directionality, and agent
policies all have at least some correlation with performance,
and thus should be considered when assessing the Complexity
of a scenario. While the support for H2 vindicates prior use
of Density as a proxy for Complexity, the partial support for
H1 suggests that a more accurate picture can be obtained by
analyzing the rest of the contextual factors.

Despite being trained on only 5 ORCA agent circle cross-
ings, RGL achieves higher Success than the MPC and MPPI
methods in nearly all experiments, particularly in high Density
scenarios. Its Success Rate nearly mirrors ORCA (its training
Policy Mixture), however with consistently higher Minimum
Distances to humans. This indicates it learned similar collision
avoidance behavior to ORCA, while also learning to better
respect agents’ personal space.

MPC-CV, MPC-SGAN, and MPPI-SGAN performance
scales poorly with moderate to high Density, although we
do see MPPI-SGAN scales better than MPC-SGAN, showing
that a stronger controller implementation does indeed lead
to better performance (albeit with slightly lower Minimum
Distances). The steep decrease for all three methods, however,
indicates that having an inaccurate prediction model becomes
increasingly problematic as the number of agent trajectories
predicted increases, even with a more robust controller.

In nearly all experiments, RP and ORCA policies had low
average Time, while still maintaining comparable or better
Success rates to other methods. Even the CV agent was
moderately Successful in lower Complexity scenarios, which
matches prior experimental outcomes [1]. SFM’s high Success
Rates and Minimum Distances indicate that with proper tuning
it could be viable as a local controller for a socially navigating
robot, although more must be done to evaluate whether its
effectiveness transfers out of simulation.

We do however see that the MPC methods maintain the
highest Minimum Distance, while ORCA, RP, and CV have
the lowest Minimum Distances. Additionally, the MPC meth-
ods, with the exception of the Environment Width experiments,
maintain comparable Path Irregularity to ORCA, SFM, and
RGL, showing they can maintain distance with compara-
bly smooth paths. Thus we see that while the reactive and
CV methods (with the exception of SFM) achieve efficient,
collision-free navigation among cooperative agents, they are
worse at respecting the personal space of others compared to
predictive methods.

We obtained evidence that increased heterogeneity of sce-
narios is not by itself an indicator of increased Complexity.

Qualitatively, we observed that passing scenarios are gener-
ally easier to navigate than crossing, and SFM agents are
much more subservient than ORCA. An implicit hypothesis
in our experimental ordering was that a mixture of two
Directionalities or Policy Mixtures would be more Complex to
navigate than either individually. We instead see improvement
in the ORCA/SFM and Passing/Crossing scenarios compared
to ORCA and Crossing only, which suggests the combinations
are actually less Complex.

V. DISCUSSION

Conducting high-Complexity evaluations. Evaluations in
the literature are often conducted under low-Density settings
(Table I). Our experiments demonstrate that most algorithms
handle those well but experience significant performance re-
ductions as Density increases. Similarly, while many works
contain passing-only experiments, in our study, Passing has
the highest Success rates and Minimum Distances to agents,
indicating it is the easiest to navigate. Additionally, while
many works consider Medium-to-Large rooms, these appear
to be the simplest to navigate (Fig. 3). Finally, nearly all
evaluations in recent literature focus on scenarios with ex-
clusively cooperative agents, which our experiments show
are easiest. These practices hinder the extraction of helpful
insights; for example, had we not manipulated the Complexity
factors towards the upper extremes, the severe performance
drops at high Density experienced by MPC-CV, MPC-SGAN,
and MPPI-SGAN would not have been identified. These
observations suggest that the social navigation community
should shift towards studying scenarios of higher Complexity
to move beyond the frontier. Specifically, more evaluations in
more geometrically-constrained, highly-mixed and high-traffic
environments, similar to many context-rich public domains
should be conducted.

Handling test-time distribution. The high Success rates of
CV and RP suggest that in lower-Complexity regimes, it might
be sufficient to use non-reactive classical planning techniques.
As the Complexity increases, all algorithms experience a
steep performance decline, the magnitude of which serves
to indicate how far out of distribution an algorithm operates.
Our evaluation (Fig. 3) captures the sensitivity of data-driven
approaches to their training distribution. For instance, we see
that RGL, and MPC/MPPI-SGAN experience a substantial
performance decline as the test-time Density moves away
from the training/tuning Density (0.05, 0.10 agents/m2). In
practice, data-driven approaches will often face distribution
shift at deployment, leading to unexpected or unsafe behavior,
as demonstrated by the performance drop experienced by RGL
and the MPC approaches in scenarios of different Complexity
than their training data. Thus, to safely and effectively deploy
social navigation algorithms, it will be important to rigorously
characterize the scenarios in which they can be expected to
perform effectively, and which scenarios are out of distribution
and may cause performance degradation.

Reproducing Complexity. In our literature review, we
found that the amount of details provided varied substantially
among papers, leaving us to approximate values based on
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figures or supplementary material, when available. We believe
that sharing more precise details related to the Complexity
factors we identified will be an important step towards better
reproducibility in social navigation.

Simulating complex settings. While realistically simulating
pedestrian-robot interactions is challenging [1, 29], we view it
as an essential tool for testing high-Complexity settings that
are difficult to safely replicate in the real world. This requires
revisiting conventional assumptions, such as that humans are
non-reactive to the robot [13, 36, 42, 43, 58, 64], which is
unrealistic since the robots used (see Table I) generally have
a large enough footprint to be observed. Thus, simulation
should focus on visible robot settings, leveraging metrics
and considerations of users’ perceptions [26–28] to compare
algorithms’ social performance.

Limitations. Our analysis is a step towards understanding
the Complexity of social navigation scenarios; an important
next step would be to validate our observations with real-
world experiments. While our evaluation involves standard
metrics [1, 2], it lacks a user-centered perspective. Future
work will incorporate metrics mapping robot behavior to users’
impressions [26, 27, 69]. We tested algorithms for which we
found open-source implementations but additional algorithms
could be included. We strived for a fair comparison by tuning
all algorithms w.r.t. the same criteria. While tuning can always
be improved, the key takeaway remains: there is a steep
drop in performance as Complexity increases. Additionally, we
acknowledge that our simulator makes the unrealistic assump-
tions of perfect sensing and constant-sized circular agents, and
these could be improved in future implementations. Further-
more, our results are affected by our choice of ORCA and SFM
to simulate cooperative agents, where other algorithms may
have led to different results. While these assumptions reduce
the realism of our experiments, they allow us to minimize
the effect of extraneous factors on the relationship between
the Complexity factors and performance. Future work will
investigate the robot-related factors of kinematics, sensors, and
viewpoints, and can explore the effects of additional real-world
considerations.
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