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Abstract— We focus on the problem of rearranging a set of
objects with a team of car-like robot pushers built using off-the-
shelf components. Maintaining control of pushed objects while
avoiding collisions in a tight space demands highly coordinated
motion that is challenging to execute on constrained hardware.
Centralized replanning approaches become intractable even
for small-sized problems whereas decentralized approaches
often get stuck in deadlocks. Our key insight is that by
carefully assigning pushing tasks to robots, we could reduce
the complexity of the rearrangement task, enabling robust
performance via scalable decentralized control. Based on this
insight, we built PuSHR, a system that optimally assigns
pushing tasks and trajectories to robots offline, and performs
trajectory tracking via decentralized control online. Through
an ablation study in simulation, we demonstrate that PuSHR
dominates baselines ranging from purely centralized to fully
decentralized in terms of success rate and time efficiency across
challenging tasks with up to 4 robots. Hardware experiments
demonstrate the transfer of our system to the real world and
highlight its robustness to model inaccuracies. Our code can be
found at https://github.com/prl-mushr/pushr, and videos from
our experiments at https://youtu.be/nyUn9mHoR8Y.

I. INTRODUCTION

Multirobot systems have transformed sectors like fulfill-
ment and warehouse automation. This was made possible in
part thanks to efficient, scalable algorithms for multiagent
pathfinding (MAPF) [3, 18, 23, 29] and task assignment
(TA) [8, 11, 17, 21, 27]. Often, real-world robot deploy-
ment of such algorithms leverages extensive workspace and
hardware engineering. Robots are typically holonomic, follow
predefined paths (e.g., wire-guided), move in very constrained
ways (e.g., rectilinearly like Amazon’s Kiva robots [38]), and
feature advanced gripping mechanisms.

In this paper, we are driven by the challenge of tackling
real-world rearrangement tasks on constrained hardware with
minimal workspace engineering. Using a team of car-like
robots [30], we consider the task of rearranging a set of
cubic blocks into a desired planar pattern via pushing actions
realized via their front bumper (see Fig. 1). Leveraging
pushing, mobile robots can be converted into effective
mobile manipulators, capable of completing even complex
rearrangement tasks without requiring customized grippers.

Simultaneously accounting for collision avoidance and
push-stability in a tight space demands highly coordinated
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Fig. 1: The PuSHR system guides four MuSHR [30] robots
to rearrange four blocks via pushing.

motion. Centralized MAPF algorithms can produce plans
for complex rearrangement problems but accounting for
model inaccuracies online requires frequent replanning that is
impractical to execute on constrained hardware. On the other
hand, decentralized controllers [5, 33] provide scalability but
lack an understanding of the global task structure which often
gets them stuck in deadlocks.

Our key insight is that optimally assigning pushing tasks
to robots could simplify multi-robot coordination and enable
robust performance via scalable decentralized control. Com-
bined task and motion planning is intractable in our problem
domain. Instead of simultaneously iterating over assignments
and paths, we first plan an optimal task assignment consid-
ering a discretized workspace representation, and using this
assignment, we plan collision-free trajectories for all robots
in the continuous workspace. Each robot is then tracking its
assigned trajectory via decentralized model predictive control
accounting for collision avoidance and trajectory deviations.

Through a simulation-based ablation study, we demonstrate
that our system (PuSHR) is capable of handling a variety of
complex rearrangement scenarios involving up to 4 robots,
including asymmetric scenarios with more or fewer robots
than objects. In particular, PuSHR is the only system that
successfully completes all scenarios, often with the top time
efficiency among a series of baselines ranging from fully
decentralized to fully centralized control. Through hardware
experiments on a team of MuSHR robots [30], we present
statistical insights about the ability of PuSHR to handle
model inaccuracies and produce robust performance across
challenging scenarios with up to 4 robots.

II. RELATED WORK

Our system design brings together multirobot system de-
sign, and both nonprehensile and collaborative manipulation.

https://github.com/prl-mushr/pushr
https://youtu.be/nyUn9mHoR8Y


Fig. 2: Overview of the PuSHR system architecture. Our system comprises task assignment, grasp planning, and local
collision avoidance control. PuSHR guides a set of robots to push a set of blocks toward a set of goal configurations.

A. Multirobot Systems

Many important advances in MAPF came in recent years,
driven by the scalability of multi-robot systems. Algorithms
like M∗ [35] and Conflict Based Search (CBS) [29] and their
variants are behind many successful real-world deployments
of multi-robot systems, ranging from fulfillment to warehouse
and manufacturing. Such deployments have encouraged
further investigation of MAPF variants like multiagent pickup
and delivery [3, 21, 23] and the incorporation of kinodynamic
constraints [18, 37]. In parallel, TA has also found important
applicability in physical domains involving teams of robots
and/or humans [8, 17, 27]. In this paper, we integrate recent
advances in kinodynamic MAPF [37] and TA [11] into a
real-world system.

Besides multi-robot planning, there is recent activity in
control for dynamic multiagent domains. Graphics applica-
tions have motivated crowd simulators [33], whereas robot
deployment in crowded and driving domains has led to
proactive controllers for collision avoidance [26, 28]. The
insights of such algorithms are often transferred in multi-robot
domains where teams of robots navigate in close proxim-
ity [15]. In this work, we leverage insights from multiagent
collision avoidance [5] into the design of a decentralized
local controller that robustly adjusts for deviations from the
multiagent plan during deployment.

B. Nonprehensile Manipulation

Nonprehensile manipulation and especially push-based
manipulation has been an active area of research [31]. Early
work studied mechanics and control for the quasistatic
settings [9, 12, 22, 24]. Later work focused on planning
using nonprehensile manipulation primitives for complex,
cluttered environments [6, 14]. In [10], they consider pushing
multiple objects with a single pusher surface. Finally, some
work has focused on handling parameter uncertainty by
extracting data-driven force-motion models [2, 40], learning
to adapt to different objects [19], or learning end-to-end
pushing policies [20, 39]. In this paper, we leverage insights
on quasistatic pushing [12, 14, 22] to inform the planning
and low-level control components of our architecture.

C. Collaborative Manipulation

An active line of work explores strategies of distributing
manipulation tasks across a team of robots via implicit
signaling encoded in robots’ behaviors [25, 32, 36]. Some
works developed multi-robot systems capable of assembling
furniture [16] or transporting deformable objects [1] via
prehensile manipulation. The assumption of rigidity at the
contacts [32] often removes the need for force measure-
ments [34]. This can be restrictive as contact parameters
are challenging to estimate. In some works robots act as
sensors, collaboratively filtering important system parameters
to guide the manipulation strategy [4]. Other works focus
on alternative manipulation strategies such as multi-robot
caging [7] and pushing [25].

Unlike much of the prior work in collaborative manipula-
tion which focuses on the transportation of a single object with
holonomic pushers [1, 4, 13, 36], in this paper we consider
the rearrangement of multiple objects using nonholonomic
pushers, with each object being controlled by only one pusher.

III. THE MULTIAGENT NONPREHENSILE
REARRANGEMENT PLANNING PROBLEM

We consider a team of n mobile robots and a set of m
rectangular blocks, embedded in a workspace W ⊆ R2. We
denote the states of the robots as pi ∈ SE(2), i ∈ N =
{1, . . . , n} and the states of the objects as oj ∈ R2, j ∈
M = {1, . . . ,m} (we ignore objects’ orientation). Each robot
i follows rear-axle simple-car kinematics pik+1 = f(pik, u

i
k),

where uik represents a control action, drawn from a space
of velocities and steering angles U = [−vmax, vmax] ×
[−φmax, φmax] at timestep k. Robots may manipulate objects
via pushing realized via flat-surface bumpers attached at their
front (see Fig. 3). The goal of the robots is to rearrange the
objects from an initial configuration S = (s1, . . . , sm) to a
goal configuration G = (g1, . . . , gm) via sequences of push-
based manipulation actions. Our goal is to design a system to
enable the robots to successfully complete the rearrangement
from S to G with an efficient makespan that scales robustly
with the number of robots.



Fig. 3: Problem setup. A team of mobile robots is pushing
a set of blocks towards a set of goal locations, indicated as
circles of same color.

IV. PUSHR: A MULTIROBOT SYSTEM FOR
NONPREHENSILE REARRANGEMENT

We describe a planning architecture for multi-robot, multi-
object nonprehensile rearrangement problems.

A. Architecture Overview

As shown in Fig. 2, our architecture consists of three main
layers: a) a centralized task-assignment module that assigns
objects to robots; b) a centralized global planning module that
assigns paths to robots; c) a decentralized control module
that enables robots to track their paths while maintaining
contact with their assigned objects and avoiding collisions.
The process begins with the task assignment system receiving
the initial location of the robots and the pickup and delivery
location of the blocks. The task assignment system then
provides the global planner with the optimized robot-task
pairs. The global planner produces a space-time trajectory
for each robot. The onboard local planner then produces the
controls to follow said trajectory.

B. Task Assignment

Given robots’ initial states P0 = (p10, . . . , p
n
0 ) and blocks’

initial and final configurations, S and G respectively, the
objective of the task assignment module is to generate an
efficient assignment of robots to blocks, i.e., N → M.
Efficiency refers to the total distance required for all robots to
complete their rearrangement tasks. We cast this problem as
an instance of multiagent pathfinding (MAPF) on a discrete
graph and solve it using the Enhanced Conflict Based Search
with Task Assignment (ECBS-TA) by Hönig et al. [11] which
we adapt to our problem domain below.

Due to computation considerations, we use a discretized
representation of the workspace for task assignment. We
partition the workspace W (see Fig. 3) into a set of discrete
regions whose connectivity we describe as a graph G =
(V,E), where vertices v ∈ V represent regions, and edges
e ∈ E are adjacency relationships between them. Based
on this partition, we map the state of a robot/block to the
workspace region that contains the majority of its volume.

We assume that at each timestep, a robot can only move to
an adjacent vertex or wait at its current vertex.

ECBS-TA searches for a collision-free path set P =
(P1, . . . ,Pn) such that path i connects the initial region
of robot i ∈ N with the initial and final region of block
j ∈M. The search sequentially refines path assignments by
resolving emerging robot collisions, driven by a Euclidean-
distance-based heuristic until a collision-free path set P is
found. A byproduct of this process is the assignment of block
j ∈ M to robot i ∈ N ∀i ∈ N . We modify ECBS-TA to
handle problems with n 6= m as follows: when n > m, the
m robots with the lowest cost complete the rearrangement,
and when n < m, the robots rearrange the n blocks with the
lowest cost first, then task assignment is assigns the remaining
m− n blocks to robots until all blocks are assigned.

C. Centralized Global Planning

The paths produced by the task assignment module do
not account for robot kinematics. Thus, we invoke a global
planner to generate smooth, collision-free robot trajectories
that respect the task assignment captured in P . For this,
we use CL-CBS [37], an algorithm that searches for a
collision-free trajectory set R = (R1, . . . ,Rn), where Ri =
(ri0, . . . , r

i
K) is the trajectory planned for robot i ∈ N . The

search process assembles individual trajectories from a set
of kinematically feasible motion primitives and iterates until
conflicts are resolved using a conflict-based search (CBS)
methodology [29]. These primitives are: stopping in place;
moving forward/backward by 1 unit (equal to the speed of the
robot multiplied by the timestep); moving forward left/right
on a unit-length circular arc; moving backward left/right on
a unit-length circular arc.

We invoke CL-CBS twice: first to plan a set of paths that
take robots from P0 to S and wait until all robots reach S,
and then to take robots from S to G. This process outputs a
time-indexed trajectory set R = (R1, . . . ,Rn) where Ri =
(ri0, . . . , r

i
K) is the trajectory planned for robot i ∈ N .

D. MPC for Multiagent Collision Avoidance

Even small inconsistencies in following the timing of the
planned trajectories may accumulate and result in collisions
when directly following R. For this reason, we deploy a
decentralized model predictive controller (MPC) on each
robot that besides path tracking accounts for multi-agent
collision avoidance. We formulate this problem for robot i
as a discrete optimization over a set of control trajectories
U . For robot i, at every loop, the MPC outputs a trajectory
ui∗ determined as follows:

ui∗ = arg min
ui∈U

N−1∑
k=0

(
acteJcte(pik, rik) + acolJcol(Pk)

+ atimeJtime(p
i
k, r

i
k)
)

s.t. pik+1 = f(pik, u
i
k)

, (1)

where Jcte is a cross-track error cost forcing the robot to
stay close to its reference path, Jcol is a collision avoidance



Fig. 4: Deriving the stable set of controls for quasistatic pushing following prior work of [9, 14, 22]. (a) Robot-block pushing
system, and static friction boundary forces. (b) Limit surface, mapping force on the object to resulting unit velocity. (c)
Boundary friction forces are mapped to boundary unit velocities through the limit surface. (d) The stable set of unit velocities
represented on the unit control sphere. (e) Full (black color) and stable (beige) set of controls mapped to block velocities.

cost penalizing proximity between robots, Jtime is a timing
tracking cost, penalizing deviations from the timing defined
by the global plan, and acte, acol,atime are weights. The
timing cost is defined as follows:

Jtime(p
i
k, r

i
k) = âte

i
(t)− ateik (2)

where âte
i

is the reference along-track error from a waypoint
as a function of time resulting from the robot’s planned path,
and ateik is the along-track error for a given time-step. The
collision cost is defined as:

Jcol(pk) =
∑

j∈N\i

max(dthr − ||pki − pkj ||, 0) (3)

where dthr is a threshold beyond which the cost is 0.

E. Stable Pushing

Following Lynch and Mason [22], assuming quasistatic
pushing at the block/bumper contact, we derive the stable set
of unit velocities Ûstable that guarantee that the pushed object
remains fixed on the bumper. We model the contact between
the robot’s bumper and a block as a line defined by two-
point contacts at the edges of the block (Fig. 4a). Given the
block/bumper friction coefficient µ, we calculate the boundary
forces f1, f2, f3, f4 and use them to construct a composite
friction cone. Through the limit surface [9, 14] (see Fig. 4b),
we map these forces to limit unit velocities v̂1, v̂2, v̂3, v̂4,
representing the boundary of the stable set Ûstable (Fig. 4c),
beyond which the block would start sliding. Finally, we map
these velocities to limits of robot controls using the robot
kinematics (Fig. 4d) and extract a limiting turning radius that
the robots must respect to maintain control of the blocks while
pushing (Fig. 4e). Assuming a coefficient of friction µ ≈ 0.6
(which we experimentally measured upon attaching sandpaper
on the robots’ bumpers), we found this radius to be 1.6m,
corresponding to a steering-angle limit of φmax = 0.17rad
for a MuSHR robot [30]. This value was also confirmed
through experiments for speeds ranging from 0.3− 0.8m/s.

F. Implementation

In our ECBS-TA implementation, we set the suboptimality
factor w = 1.3, which gave high-quality assignments within

acceptable times. We modified CL-CBS [37] to account for
pushing stability: when planning a pushing trajectory phase,
we restrict the maximum steering angle to be less than φmax.
Our MPC used dthr = 0.6m, acte = 200, atime = 20,
acol = 15, which we obtained via parameter sweeps over
success rate and minimum distance for scenarios similar to
S3.a,b, S4.a,b (see Fig. 5). To remain within the quasistatic
regime, we set vmax = 0.4m/s, φmax = 0.314 rad during
non-pushing phases, and φmax = 0.17 rad during pushing
phases. We assume that the agents have perfect knowledge of
each other’s states and block positions. In the lab, we achieve
this using a motion-capture system.

V. EVALUATION

We conduct simulated and lab experiments by deploying
MuSHR [30] robots in a workspace of size 4× 6m2.

A. Experiment Design

Scenarios: We investigate the performance of PuSHR
across 8 scenarios of varying difficulty involving two, three,
and four robots (see Fig. 5). The scenarios involve navigating
from a set of initial robot configurations to a set of initial
block configurations, making contact with the blocks, and
pushing them to the blocks’ goal configurations. They were
designed to give rise to challenging encounters among robots.

Algorithms: To evaluate PuSHR, we perform an ablation
study, comparing its performance against a set of variants.
Note that in the following descriptions, manual TA refers to
TA that ranks around the median of all possible assignments
ordered with respect to the time cost used by ECBS-TA [11].
See Fig. 7 for an example of how different assignments in
scenario S4b rank and map to path planning Makespan.

LC. We implemented a Local Control (LC) baseline using
the NonHolonomic Time To Collision (NHTTC) [5], an
optimization-based decentralized controller that accounts for
robot kinematics and multi-robot collision avoidance. NHTTC
evaluates a set of constant-radius trajectories with respect to
distance to goal and time to collision. During pushing, we
constrain these trajectories to be in the stable set (see Fig. 4e).

TA-LC. This baseline is also LC, executed considering
optimal TA provided by ECBS-TA [11].



(a) S2.a. (b) S2.b. (c) S3.a. (d) S3.b. (e) S3.c. (f) S4.a. (g) S4.b. (h) S4.c.

Fig. 5: Scenarios used in our evaluation. The cars are shown in their initial configurations. Initial block configurations are
shown as squares whereas their goal positions are shown as circles (we ignore orientations).

TABLE I: Success rate over 100 simulated trials for each scenario and algorithm.

Configuration 2 robots - 2 objects 3 robots - 3 objects 3 robots - 4 objects 4 robots - 4 objects 4 robots - 3 objects

Scenario S2.a S2.b S3.a S3.b S3.c S4.a S4.b S4.c

LC 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TA-LC 0.99 0.99 0.89 0.99 0.00 0.98 0.00 0.73
GP 0.99 0.98 0.88 1.00 0.00 0.99 0.00 0.14
GP-CA 1.00 0.98 0.82 0.99 0.00 0.96 0.20 0.92
PuSHR 1.00 0.99 0.99 1.00 0.96 0.99 1.00 0.98

GP. Using manual TA, the Global Planning (GP) baseline
invokes CL-CBS [37] to plan trajectories for all robots, and
a decentralized MPC to track the trajectories. This MPC is
equivalent to the description of eq. (1) with acol = 0.

GP-CA. This baseline is identical to GP but uses acol 6= 0
in eq. (1) to account for collision avoidance.

PuSHR. PuSHR is identical to GP-CA, but leverages
optimal TA through ECBS-TA [11] as described in Sec. IV.

Metrics: We evaluate performance with respect to:
Success rate. We consider a trial to be successful if all

robots are able to move their assigned blocks within a
threshold distance of 0.1m from their goals. Missing the
block is also considered a failure even if the robots make it
to their end location within the specified tolerance.

Makespan. The time taken by the last robot to reach the
goal of its assigned block in a successful trial. The clock
starts when the plans are published by the global planner.

Minimum distance. The minimum Euclidean distance
between any two robots during a successful trial. A large
minimum distance is advantageous as it provides an additional
buffer to correct plan deviations and avoid collisions.

Hypotheses: We generally expect that the spatial structure
representation introduced through TA and GP will improve
the system’s time efficiency. We also expect that the collision
avoidance (CA) module will enable robots to keep a larger
buffer between each other. We distill our expectations about
system performance into the following hypotheses:

H1. GP achieves higher success rate than LC.
H2. GP-CA achieves higher minimum distance than GP.
H3. TA improves the success rate for LC and GP-CA.
H4. PuSHR is the most successful across all scenarios.
H5. PuSHR maintains block control in the real world.
Experimental Procedure. To extract statistical insights

about the planning and tracking performance of PuSHR, we

initially ran the scenarios of Fig. 5 in simulation. For each
scenario, we generated 100 different trials, each resulting
from a random spatial perturbation (radius 0.05m) of all
robots’ initial configurations. These perturbations allow us
to understand the robustness of PuSHR while ensuring the
consistency of the scenarios. We executed all trials for each
scenario with each of the algorithms.

To characterize the robustness of PuSHR to model inaccu-
racies, we executed some of the more challenging scenarios
in an identical lab setup. As blocks, we used a set of wooden
cubes with a side of 0.1m. Our workspace was fully covered
by a motion capture system of 12 overhead cameras, providing
high-accuracy localization of robots (∼ 1mm). Note that we
only recorded the initial block configurations, letting our
system push the blocks to their goals by leveraging the stable
pushing derivation, without closing the loop on block position.

B. Results

In Tables I, II, and III, we report respectively the Success
rate, Makespan, and Minimum distance for all algorithms
across all scenarios in simulation. In Fig. 8, we report the
performance of PuSHR on three of the scenarios (S2.b,
S3.a, and S4.a) executed in the lab. Footage from our lab
experiments can be found at https://youtu.be/nyUn9mHoR8Y.

H1. GP completes 7/8 scenarios with high success (Table I)
whereas LC only completes the easiest scenario (S2.a), thus
H1 is confirmed. Lacking a detailed predictive model, LC
cannot anticipate future conflicts in such a confined space.
This observation is more pronounced for n ≥ 3 with LC
often violating the workspace or getting stuck.

H2. GP-CA keeps greater or equal clearances than GP for
similar success (Table III), thus confirming H2. As n increases,
planning with GP produces more complex maneuvers that
need to be executed in a tight space. Thus, minor deviations

https://youtu.be/nyUn9mHoR8Y


TABLE II: Makespan (s) over 100 simulated trials for each scenario and algorithm.

Configuration 2 robots - 2 objects 3 robots - 3 objects 3 robots - 4 objects 4 robots - 4 objects 4 robots - 3 objects

Scenario S2.a S2.b S3.a S3.b S3.c S4.a S4.b S4.c

LC 29.25 ± 2.83 N/A N/A N/A N/A N/A N/A N/A
TA-LC 30.03 ± 2.97 25.03 ± 0.00 17.02 ± 0.00 17.91 ± 0.31 N/A 17.60 ± 0.49 N/A 14.17 ± 0.36
GP 20.02 ± 0.10 32.75 ± 0.52 33.84 ± 0.44 29.06 ± 0.01 N/A 34.08 ± 0.02 N/A 32.49 ± 0.50
GP-CA 20.03 ± 0.00 32.72 ± 0.49 33.98 ± 0.50 30.12 ± 0.83 N/A 34.34 ± 0.44 31.20 ± 0.35 32.76 ± 0.46
PuSHR 20.02 ± 0.00 13.02 ± 0.00 22.01 ± 0.17 20.61 ± 0.50 51.55 ± 0.85 23.36 ± 0.47 21.05 ± 0.01 18.03 ± 0.01

TABLE III: Minimum distance (m) over 100 simulated trials for each scenario and algorithm.

Configuration 2 robots - 2 objects 3 robots - 3 objects 3 robots - 4 objects 4 robots - 4 objects 4 robots - 3 objects

Scenario S2.a S2.b S3.a S3.b S3.c S4.a S4.b S4.c

LC 0.50 ± 0.01 N/A N/A N/A N/A N/A N/A N/A
TA-LC 0.50 ± 0.01 0.69 ± 0.20 0.44 ± 0.03 0.57 ± 0.01 N/A 0.57 ± 0.01 N/A 0.99 ± 0.00
GP 0.49 ± 0.02 0.82 ± 0.01 0.43 ± 0.01 0.53 ± 0.06 N/A 0.37 ± 0.01 N/A 0.41 ± 0.01
GP-CA 0.66 ± 0.01 0.82 ± 0.01 0.45 ± 0.03 0.70 ± 0.03 N/A 0.39 ± 0.01 0.37 ± 0.02 0.41 ± 0.01
PuSHR 0.67 ± 0.02 0.94 ± 0.02 0.42 ± 0.00 0.72 ± 0.01 0.73 ± 0.01 0.73 ± 0.01 0.39 ± 0.02 1.07 ± 0.01

due to tracking errors can bring collisions, and CA can help
avoid this by increasing clearances. The distance gains of the
GP-CA enable it to solve the challenging S4.b in contrast to
GP which failed completely.

H3. PuSHR and TA-LC improve respectively over GP-CA
and LC (Table I) confirming H3. We also see that PuSHR and
TA-LC achieve improved Makespans (Table II) suggesting
that TA enables more efficient coordination among agents.
Taking a deeper look, we see that this is indeed the case:
Fig. 7 shows a positive correlation between TA quality (ECBS-
TA cost) and path planning quality (CL-CBS Makespan),
with the lowest ECBS-TA cost coinciding with the lowest
CL-CBS Makespan. Note that unlike CL-CBS, ECBS-TA
uses a simplified version of the domain (no nonholonomic
constraints), leading to an imperfect correlation of the costs;
however the trend is clear: better task assignments lead to
better plans overall. This pattern is also visible qualitatively
in Fig. 6: plans generated upon TA are geometrically simpler.
This simplification is helpful in more complex cases such as
S3.c, where the non-TA paths are too difficult for the MPC
to track properly, causing even GP-CA to fail.

H4. Thanks to TA and collision avoidance, PuSHR scales
best as the only one to succeed in all scenarios, always with
the top success rate. This confirms H4. Our system is slower
than TA-LC in a few scenarios (S3.a, S3.b, S4.a, s4.c) but
more successful as the global plan often pauses the trajectories
to synchronize robots whereas TA-LC does not, thus finishing
faster in simple scenarios. It is important to note that these
scenarios are much simpler than e.g., S4.b, involving sparse
regions, and do not require much turning (see Fig. 5).

H5. Our system achieved 100% success in the lab trials
(Fig. 8), which implies that the robots were consistently able
to maintain control of their blocks and push them to their
goals. Thus H5 is confirmed. Compared to the simulated trials,
we see that in the lab the Makespan increases, an artifact of
communication, computation, and actuation overhead. The
Minimum distance varies but provides a sufficient buffer to
avoid collisions. We observed that the collision avoidance
feature of the MPC was instrumental in making sure the robots

(a) (b)

Fig. 6: Task simplification via task assignment (TA). (a)
Paths planned by CL-CBS upon manual TA for scenario S4.b
(median assignment quality out of 4! combinations). (b) Paths
planned by CL-CBS upon optimal TA from ECBS-TA for the
same scenario. Blocks’ initial and goal locations are noted
as squares and circles of the same color respectively.

succeeded even when unmodeled physics or communication
delays caused deviations from the planned trajectories.

VI. DISCUSSION

Task assignment. Our findings (H3) confirmed the value
of task assignment for our domain. We suspected this when
we saw that a manual assignment strategy using a distance-
based heuristic for task assignment would fail when distances
are roughly equal (e.g., Fig. 5g). This motivated us to
incorporate ECBS-TA [11] into our system which significantly
boosted performance. However, the ECBS-TA implementation
makes use of a Euclidian-distance-based heuristic, which is
unaware of robots’ kinematics or pushing constraints and does
not guarantee ideal assignments as the workspace density
increases. A direction for future work is to design a heuristic
that efficiently incorporates such constraints.



Fig. 7: TA cost (x-axis) against path quality cost (y-axis) for
the 4! possible task assignments for scenario S4.b. The lowest
makespan coincides with the lowest TA cost (red color).

Fig. 8: Makespan and Minimum distance from lab experi-
ments. Bars are means and errors are standard deviations over
10 trials. All trials were successful.

Tractability. As we initially experimented with ECBS-TA
and CL-CBS, two CBS-driven algorithms, we explored the
idea of jointly extracting task assignments and trajectories
through CL-CBS. However, simultaneously iterating over
multiagent trajectories and assignments using the CBS
paradigm is intractable. In contrast, ECBS-TA finds the
optimal task assignment very efficiently by planning in a
much lower resolution (a 2-dimensional grid); then CL-CBS
produces a single joint plan in the higher-resolution space
that leverages the simplification induced by the advantageous
assignment. For reference, planning for the S4.a scenario
(Fig. 5) takes around 10min with the former approach
whereas PuSHR takes about 10 seconds. Computations took
place on a laptop with an Intel i7-10750H CPU (6 cores @
2.6 GHz). This enabled us to scale our evaluation and run
hardware experiments. However, the problem of efficiently
combining task and motion planning in this domain is still
interesting and worth investigating.

Quasistatics. Leveraging stable pushing [22], PuSHR
completed challenging tasks under constraints imposed by
robots’ kinematics, their plans, and the workspace boundary
without closing the loop for block control. While more fine-
grained contact models [2, 20, 31] could help scale the system

(e.g., dynamic pushing, irregular objects), our experiments
demonstrate the value of quasistatic analytical modeling for
a variety of practical problems involving contact.
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