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Abstract— Recent literature has proposed algorithms for
autonomous generation of robot motion that communicates
functional attributes of a robot’s state such as intent or
incapability. However, less is known about how to automate the
generation of motion for communicating higher-level behavioral
attributes such as curiosity or competence. In this work, we
consider a coverage task resembling robot vacuum cleaning
in a household. Through a virtual interface, we collect a
dataset of human attributions to robot trajectories during task
execution and extract a probabilistic model that maps robot
trajectories to human attributions. We then incorporate this
model into an trajectory generation mechanism that balances
between task completion and communication of a desired
behavioral attribution. Through an online user study on a
different household layout, we find that our prediction model
accurately captures human attribution for coverage tasks.
Further, our generation mechanism produces trajectories that
are thematically consistent, but more research is required to
understand how to balance attribution and task performance.

I. INTRODUCTION

As robots enter households and public spaces, it is in-
creasingly important to account for human perceptions of
their behavior [26, 25, 17, 6]. A common setting involves a
robot performing a task while a human bystander observes
a portion of its behavior. While the robot’s actions might be
driven by unambiguous internal objectives, solely optimizing
such criteria might result in robot behavior that is difficult to
interpret or disruptive to surrounding humans. For example,
a highly articulated robot may follow a non-humanlike
trajectory that makes observers uncomfortable [29] or a
home robot such as a robot vacuum cleaner can exhibit
unpredictable motion that interrupts home activity.

Accounting for high-level attributions to robot behavior is
a complex problem relying on the mechanisms underlying
human inference and behavior generation. In psychology,
there is a long history of work on understanding human
attribution for behavior explanation or inference of behavior
traits [10, 20]. Humans are highly attuned to how their
actions are perceived and adapt their behavior to elicit a
desired impression from others or adhere to social norms,
a concept that is known as presentation of self [8]. The
tendency for humans to attribute even situational behaviors
to deeper character traits is so pervasive that it is known as
“the fundamental attribution error” [23].

Inspired by these theories, we envision that robots in
human environments can leverage an understanding of hu-
mans’ attribution mechanisms to generate behaviors that
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Fig. 1: Traces of trajectories in our virtual household cover-
age domain. Labels describe their usage in Experiment I.

elicit desired human impressions. This will enable robots to
more seamlessly integrate in human spaces and increase their
acceptance. In this work, we use a virtual interface to collect
a dataset of human attributions to a vacuum cleaning robot’s
coverage trajectories. Based on this dataset, we extract
a set of dominant attribution dimensions—competence,
brokenness and curiosity—and a low-dimensional
trajectory representation that captures salient features of the
robot’s motion. We learn a probabilistic model that maps a
robot trajectory to the expected distribution of human ratings.
We then incorporate this model into a trajectory generation
framework that balances between task-related and attribution
elicitation objectives. We conduct an online user study to
verify that our generation framework produces trajectories
that are thematically consistent both within the same domain
and also within a domain variant. Our experiments highlight
the need for further work to understand how to balance
attribution and task-related specifications.

II. RELATED WORK

Several studies have illustrated the value of robot motion
as a communicative modality [7, 15, 5, 18, 22, 11]. Some
works propose algorithms for legible robot motion gener-
ation, which have been shown to enable effective human-
robot collaboration in manipulation tasks [7], or smooth
robot navigation in close proximity to humans [5, 22].



Other works focus on conveying higher-level information
such as the robot’s objective function [11] or the source
of failure [18] in failure cases. Animation principles [27]
or movement analysis [16] are often employed to inform
the design of expressive robot behaviors. Finally, related
graphics research focuses on the generation of stylistically
distinct but functionally equivalent motion primitives for
walking and other activities [3, 9].

The complex interplay of embodiment and communicative
motion has motivated research on understanding human per-
ceptions of robot behavior. For instance, early work looked
at the effect of robot gaze on human impressions [13]. Sung
et al. [26] study human attitudes towards robot vacuum
cleaners and propose design principles aimed at enhancing
the acceptance of robots in domestic environments. [25]
report a relation between robot motion and perceived affect.
Lo et al. [19] and [22] investigate human perceptions of
different robot navigation strategies whereas Walker et al.
[28] study human perceptions of robot actions that deviate
from the robot’s assigned task.

Our work draws inspiration from recent work on design
and methods for extracting human perceptions and attri-
butions for robot motion [26, 26, 25]. However, it moves
beyond the problem of understanding and analyzing human
perceptions, and focuses on the problem of synthesizing
implicitly communicative motion. Our work is closely related
to past work on the generation of legible robot motion [7, 15,
21, 18] in that we also incorporate a model of human infer-
ence into the robot’s motion generation pipeline. However,
unlike these works which emphasize the communication of
task-related attributes, our focus is instead on communicating
high-level, behavioral attributes through robot motion.

ITI. A FRAMEWORK FOR BEHAVIORAL ATTRIBUTION

We consider a robot performing a task 7 in a human
environment. We denote by s € S the robot state where S is
a state space and define a robot trajectory as a sequence of
states £ = (so, ..., s¢) where indices correspond to timesteps
following a fixed time parametrization of step size dt. Let
us define the task as a tuple 7 = (2,4, P,C) where Z is a
space of robot trajectories, A denotes the robot action space,
P : Ex A — E represents a deterministic state transition
model, and C : £ — R is a trajectory cost.

We assume that the robot starts from an initial state s; and
reaches a terminal state st at the end of the task execution
(time T') by executing a trajectory & = (sg,...,s7). We
assume that this trajectory ¢ is fully observable by a human
observer who is aware of the task specification 7. The
observer makes an inference of the form Zp : E x T — B,
where = is a space of trajectories and B is a space of
behavioral attributions. The form of B will vary, but should
be selected to capture the range, combinations, and intensities
of attributions that the robot should be sensitive to.

Conversely, given a behavioral attribution b from a space
of behavioral attributions B and a task 7, the observer
expects to see a trajectory &, € Z, corresponding to an
inference of the form Z; : B x 7 — E. In other words, we

assume that there is a “way” that a curious—or any other
attribution—robot would be expected to execute a particular
task. Equivalently, we assume that there is a set of trajectories
that the observer could more often imagine to be consistent
with some attribution.

In this paper, we aim to provide a general framework for
modeling inferences of the form Zp, and Z¢. Our goal is to
enable robots to understand and account for the communica-
tive effects of their motion on human observers.

IV. MODELING AND INFLUENCING ATTRIBUTIONS

We consider a scenario in which a mobile robot performs a
coverage task in a two-dimensional discrete workspace while
a human is observing from a top-down view. We employ
a virtual environment' that resembles a house and stylize
the agent as a robot vacuum cleaner (see Fig.1) since the
general population is already somewhat familiar> with such
robots [26, 12], making it easier for participants to develop
mental models about their motion than, for example, that of
a manipulator.

In this scenario, the robot state space is the complete home
workspace and = is the space of all possible trajectories of
any length that could be followed in the space. The robot
action space A consists of the cardinal directions and actions
are deterministic. The cost of a state transition from a state s;
to a state syt after having followed a trajectory &; is defined
as 0 if the state hasn’t been visited before, -5 if the state is a
small traversable obstacle (e.g. a vase), and -1 otherwise. A
penalty proportional to the number of unvisited goal states
is applied on termination.

A. Understanding Behavioral Attribution for Coverage Tasks

Through exploratory studies on Amazon Mechanical Turk,
we sought to extract domain knowledge for attributions
to robot motion within coverage tasks. Using the home
layout of Fig.1, we generated a set of trajectories exhibiting
qualitatively distinct ways the robot could respond to the
prompt to “clean the bedroom,” ranging from a near optimal
coverage plan to a trajectory that barely visited the target
room. Each participant viewed videos of a random selection
of three of these trajectories. After each video, participants
were asked: a) to provide three words to describe the
robot’s behavior; b) to rate their agreement that “the robot
is ” for a range of adjectives drawn from relevant
literature on human attributions [1, 4, 28]; ¢) to “explain what
factors contributed to their strongest ratings.” In addition
to attributions, participants were asked to use an interactive
interface to demonstrate how they would “clean the bedroom
in a way that makes the robot look ” where the blank
was filled at random with an adjective from the attribution
rating items. Across all exploratory studies, we collected 375
sets of attribution ratings from 115 participants (73 male, 41
female) aged 21-70 (M = 38.3, SD = 10.7) covering 63
trajectories and a total of 193 demonstrations.

IThe environment is built in the Phaser game engine (https://
phaser.io/) and uses art by Bonsaiheldin under a CC-BY-SA license.

2 A recent presentation by iRobot [12] reports that about 14M households
had robot vacuum cleaners in the U.S. in 2019.
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TABLE I: Low-dimensional trajectory representation.

TABLE II: Test performance of models.

Feature Description

Coverage (%)
Redundant coverage (%)
Overlap (%)

Length (%)

Hook template (%)
Straight template (%)
Start-stop template (%)
Idleness (%)

Map coverage (%)
Collision (%)

Goal deviation (%)

Goal region states visited at least once.
Goal region states visited more than once.
Plan states visited more than once.
Normalized plan length3.
Frequency of ”U” shape patterns in plan.
Frequency of action repetition in plan.
Frequency of idle-move-idle patterns in plan.
Frequency of idle actions in plan.
Ratio of map states visited at least once.
Ratio of obstacle states from O in plan.
Ratio of of plan before first goal state.

1) Extracting the Space of Attributions: To understand
the inter-correlation of participant adjective ratings, we con-
ducted an exploratory factor analysis. We selected a three-
factor model (promax rotation) which explained 74% of the
observed variance due to its parsimony and coherence. The
first factor, which we call “competence” for its similarity to
the relevant factor described by Carpinella et al. [4] consists
of six items (responsible, competent, efficient, reliable, intel-
ligent, focused) centered on the capability and diligence of
the robot. The second consists of four items (lost, clumsy,
confused, broken) alluding to a temporary or extended neg-
ative state, for which we title the factor “brokeness”. The
third contains two items (curious, investigative) and matches
the curiosity factor examined by Walker et al. [28].

The extracted model enables the computation of stan-
dardized factor scores roughly in the range [—3, 3] which
summarize how much a participant’s ratings for the items
deviate from the mean along each factor. Reflecting the
format of the component items, a high or low factor score
denotes agreement or disagreement that a trajectory ex-
presses an attribution, respectively. Based on this model,
we represent the attribution for a trajectory & as a tuple
b = (bcompetent;bbrokembcurious) € B where the space of
attributions is the set B = [—3, 3.

2) Low-dimensional Trajectory Representation: The
space of possible trajectories in this domain is too large to
explore directly, so we constructed a low-dimensional space
® based on features relevant to the formation of attribution
ratings. This allows us to describe a trajectory & as a
vector ¢ = ¢(§) € ®. The feature space was inspired by
relevant literature on human behavioral attribution to robot
motion and enriched with features appearing in participants’
explanations. The final set of 11 features used in further
experiments is listed in Table I.

B. Mapping Trajectories to Attribution Scores

Given a trajectory &, an observer’s inference Zp of be-
havioral attribution can be expected to vary from individual
to individual and as a result of measurement error. For this
reason, we model Zp as a conditional probability density
IB=(blpe) : B — R. We observed multimodality in the
distribution of factor scores for some trajectories, so we use
a Mixture Density Network (MDN) [2] to approximate each

3Scaled so that 1 corresponds to three times the size of V.

Model Parameters ~ Average NLL SD
Uniform - 5.38 0.00
MDN, C=1 120 3.13+.05 1.35 £.09
MDN, C=4 300 2.66 = .08 1.57 £ .05
MDN Ensemble, C=4 N=8 2400 2.53 £+ .06 1.38 £ .04

conditional density as a mixture distribution fj=(b|d¢) =
Zq‘,c=1 a;(Pe)ki(bloe) where oy, ¢ = 1,...,C, is a mixing
coefficient, and k; is a multivariate Gaussian kernel function
with mean p; and covariance ¥;. Note that the mixing
coefficients o; and the Gaussian parameters p; and X; are
functions of the featurized trajectory ¢¢. In our models,
these functions are implemented as linear transformations
of features produced by a shared multi-layer perceptron.

To make efficient use of scarce data, we created ensembles
of MDNs using bootstrap aggregation, i.e., we trained NV
models with different data splits and uniformly weight their
predictions: fg"”E(b|¢§) =+ Zf\;l f51=(bl9e).

We studied three different model configurations; single and
four component MDNs, i.e., C = 1 and C = 4 and an
ensemble of 8 MDNs each with four components, i.e., C' =
4, N = 8. We trained all models using an average negative
log likelihood (NLL) loss function, the Adam optimizer [14],
noise regularization [24], and early stopping. We configured
the input MLP to use a single hidden layer with 5 units
and a hyperbolic tangent activation. The dataset used was
an expanded version of the set collected in our exploratory
studies containing 126 trajectories with 671 attribution rat-
ings. Table II compares the NLL of the models over held-out
data. The mean indicates the typical quality of the prediction
and the standard deviation indicates the degree to which this
varied from sample to sample. Both quantities are averaged
over 16 random folds and reported with bootstrapped 95%
confidence intervals. All models compare favorably to a
uniform baseline, which simply assigns equal probability to
all outcomes. The ensemble model performs best and is used
in further experiments in the remainder of the paper.

C. Generating Trajectories that Elicit Desired Attributions

We represent the behavior specification as a one-
dimensional Gaussian b* ~ N (u,, 07) centered on a desired
rating pp, € [—3, 3] for a single attribution dimension where
o} 1s a variance representing a tolerance parameter modeling
the acceptable distance from the desired behavioral rating.
We use a density representation as it more closely matches
the output of our model for Zp.

Together with the task requirements as described by the
cost function C, we realize the inference Z¢ as an optimiza-
tion scheme of the form:

e = arsmin (€O + DT N Gnsof)). (1)

where Dki, denotes the KL divergence, fp, is the density
IB|=|#(£) marginalized across dimensions other than 4, and
w is a weight representing the balance between the task and
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Fig. 2: Traces of the trajectories used in Experiment II.

attribution specifications. We implement this optimization
using a hill-descending search in the space of trajectories.

V. EVALUATION

We conduct a user study to evaluate the efficacy of the
framework as a means of producing trajectories that elicit
desired attributions. In Experiment I, participants observe and
rate trajectories in the same home layout used for data col-
lection, while in Experiment II, trajectories are generated in
a new, arbitrarily modified home layout. In both experiments,
we systematically control the trajectories selected to span a
range of attributions.

a) Experiment Design: Our experiments are within-
subjects, video-based user studies, both instantiated in three
parallel sets corresponding to the three attribution dimen-
sions considered. For each dimension, we consider four
distinctly produced robot trajectories: the task-optimal tra-
jectory (TSK), the trajectories optimized to alternately max-
imize and minimize a particular attribution using a goal of
N(£1,0.3) (B+ and B-), and a trajectory that optimizes
for a balance between the task cost and the attribution goal
following eq. (1) (BAL). The full set of trajectories is shown
in Fig.1 and Fig.2. In all experiments, participants rate and
describe each trajectory using the same items and questions
used in the exploratory studies of Sec IV. After watching all
trajectories in a randomly assigned order, they also respond
to additional comparative questions: “which robot seemed the
most and “which robot seemed the least ”,
where the blanks are filled with the adjective corresponding
to the dimension of attribution studied. Both comparisons are
accompanied with an open-ended question asking for a brief
explanation of the choice.

b) Participants: A total of 144 participants (75 male,
69 female) aged 20-72 (M = 37.0, SD = 12.0) were
recruited via Amazon Mechanical Turk. 16 had taken part
in our earlier exploratory studies. Participants were equally

2

distributed amongst the six total sets of conditions. Condition
orderings were fully counterbalanced.

c) Results: Average negative log likelihoods were cal-
culated as 2.51 (SD = 1.17) for Experiment I and 2.93
(SD = 1.40) for Experiment II. B+ was selected as the
”most ” trajectory for brokenness and curiosity by
a majority of participants across both experiments. “"Most”
selection for competence was mixed with strong modes on
B+ and TSK. B- was selected as the “least ” trajectory
for competence and curiosity by a majority of participants
across both experiments. “Least” selection for brokenness
was mixed between B- and TSK.

VI. DISCUSSION

The average NLL of the attributions observed across
Experiment I was lower than a uniform model, indicating
that the model was able to meaningfully predict attributions
in the layout it was trained in. The same held in Experiment
IT where the environment layout was perturbed. The variance
indicates that the model’s performance is not even across
conditions, but the variation is not significantly different than
that seen in the model selection experiments (see Table II).

When optimizing for curiosity, the model emphasized
over-coverage of the goal region and visiting penalized states
depicted with vases (Exp. I&II-Curiosity B+), leading to
mixed results, with a strong effect in Experiment I (Fig.1)
and little effect in Experiment II (Fig.2). Some participants
highlight the extra coverage as a kind of exploration; "It
seemed to check the same places multiple times as if it was
discovering”. Others attribute curiosity to the task-optimal
trajectory for avoiding repetition: “because it visited all the
areas it hadn’t instead of going back over the same spots.”

Trajectories optimized to look “not broken” tend to over-
cover the goal region (Exp.I&II-Brokenness B-), but are seen
to be indistinguishable from the task-optimal trajectories
(see Fig.1: Exp.I&II TSK). The model similarly emphasizes
redundant goal coverage to an extreme when attempting to
appear competent (Exp. I&II-Competence B+), but this is
not successful in either of the experiments. While some
participants appreciated the extra coverage, noting that it
“may take longer but would clean the best,” many felt it went
too far and preferred the tempered BAL condition saying it
“did the best job of hitting all the areas without a lot of
backtracking and confusion.”

Only the “brokeness” factor was demonstrated to be
tunable, with BAL falling below “B+” and above “B-" in
both experiments, likely because the self-overlap and length
features that are relied upon have a linear relation with task
cost. Balanced trajectories for curiosity retain their tendency
to over-cover the goal, but lose the propensity to make
contact with the vases due to the high associated task-cost
penalty.

We are encouraged by the predictive performance of the
model. Our future work includes exploring improved meth-
ods for leveraging the model in generation and expanding to
more realistic domains.
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