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Abstract—We focus on human-robot collaborative transport,
in which a robot and a user collaboratively move an object to a
goal pose. In the absence of explicit communication, this problem
is challenging because it demands tight implicit coordination
between two heterogeneous agents, who have very different
sensing, actuation, and reasoning capabilities. Our key insight
is that the two agents can coordinate fluently by encoding subtle,
communicative signals into actions that affect the state of the
transported object. To this end, we design an inference mech-
anism that probabilistically maps observations of joint actions
executed by the two agents to a set of joint strategies of workspace
traversal. Based on this mechanism, we define a cost representing
the human’s uncertainty over the unfolding traversal strategy
and introduce it into a model predictive controller that balances
between uncertainty minimization and efficiency maximization.
We deploy our framework on a mobile manipulator (Hello Robot
Stretch) and evaluate it in a within-subjects lab study (N = 24).
We show that our framework enables greater team performance
and empowers the robot to be perceived as a significantly more
fluent and competent partner compared to baselines lacking a
communicative mechanism.

Index Terms—Human-robot collaboration, Human-robot
teams, Implicit communication

I. INTRODUCTION

Recently, there has been vivid interest in developing phys-
ically capable robot partners that could assist humans in
context-rich, dynamic and unstructured domains [26] like
homes [28, 32] and manufacturing sites [15]. An important
task in this space involves the collaborative transport of
objects that might be too large or too heavy to be transported
by a single agent. This task is especially challenging as it not
only requires efficient and fluent coordination between the two
heterogeneous partners but also the simultaneous satisfaction
of geometric, kinematic, and physics constraints.

Humans often tackle physically demanding collaborative
tasks like transport by fluently coordinating their physical
movements with their partners [25] even without a concrete
plan, with minimal explicit coordination. This capability relies
on sophisticated mechanisms connecting perception and ac-
tion. A prevalent theory from action understanding, commonly
referred to as the “teleological stance”, highlights that agents’
actions can often be explained by an underlying goal [1, 5, 8].
This idea has inspired researchers in human-robot interaction
(HRI) to develop mechanisms that communicate a robot’s
intended goal to an observer through its actions [6, 12]. These

Fig. 1: Footage from our study (N = 24) involving the collaborative
transport of an object by a user and a mobile manipulator in a
workspace with an obstacle.

mechanisms have produced intent-expressive robot behavior in
manipulation [6], autonomous driving [23], and social robot
navigation [16].

We instantiate a task of human-robot collaborative transport,
where the goal of the human-robot team is to collaboratively
move an object to a goal pose while avoiding collisions
with static obstacles (see Fig. 1). In this task, the user is
simultaneously an observer of the robot and a dynamic actor,
persistently influencing and being influenced by the robot
while it physically collaborates with them. While prior work
in human-robot collaborative transport has emphasized fixed
leadership roles for the two agents [2, 3, 14, 18, 22, 27],
we consider a dynamic negotiation over a joint strategy
of workspace traversal. We contribute a control framework
that leverages implicit communication [12] through actions
influencing the state of the transported object to enable the
robot to negotiate an efficient traversal with its human partner.
We demonstrate our framework on a mobile manipulator
and evaluate it in a lab study (N = 24) involving the
collaborative transport of an object in a workspace with an
obstacle obstruction. In our full paper [31], we perform a full
analysis to show that our framework outperforms baselines
lacking a communicative mechanism in terms of task comple-
tion and human impressions. Additionally, we include videos
from the study (https://youtu.be/0NTDrobSifg) and code and
data that could help the community iterate on our work
(https://github.com/fluentrobotics/icmpc collab transport).

https://youtu.be/0NTDrobSifg
https://github.com/fluentrobotics/icmpc_collab_transport


Fig. 2: A human (H) and a robot (R) collaboratively move an object
from an initial pose p0 to a final pose g in a workspace W . An
obstacle O stands in their way. To avoid collisions with O and reach
g, they have to coordinate on a strategy of workspace traversal. In
this work, we engineer implicit coordination through the velocities a
and u that the human and the robot exert on the object.

II. PROBLEM STATEMENT

We consider a human H and a robot R collaboratively
transporting an object. The robot and the human grasp the
object at a fixed height; this allows us to instantiate the
problem on a planar workspace W ⊆ SE(2). Assuming a
quasistatic setting, the object’s state p ∈ W evolves according
to pk+1 = f(pk, ak, uk), where a ∈ A, u ∈ U represent
human and robot velocities, respectively, and k is a time index.
The workspace includes a set of obstacle-occupied regions
O ⊂ W . The goal of the human-robot team is to transport
the object from an initial pose p0 to a desired pose g in W
(see Fig. 2) while avoiding collisions with O. We assume
that the two agents do not communicate explicitly (e.g., via
language), but they observe the actions of one another. Our
goal is to design a control policy to enable the robot to
efficiently and fluently collaborate with its human partner.

III. BALANCING FUNCTIONAL AND COMMUNICATIVE
ACTIONS IN HUMAN-ROBOT COLLABORATIVE

TRANSPORT

A. Formalizing Joint Strategies of Workspace Traversal

Collaborative tasks involving multiple agents working to-
gether require consensus on a joint strategy ψ, i.e., a qual-
itatively distinct way of completing the task, out of the set
of all possible joint strategies, Ψ. Often, this consensus is
not established a priori; rather, it is dynamically negotiated
during execution. The abstraction of a joint strategy effectively
captures critical domain knowledge at a representation level.
While prior work on collaborative transport has emphasized
role assignment across the team (i.e., whether the robot or
the human are leading or following each other) [10, 19, 21],
realistic, obstacle-cluttered environments present additional
important challenges, such as the decision over how to pass
through an obstacle-cluttered workspace.

In this work, we formalize the space of workspace traversal
strategies using tools from homotopy theory [11]. The human-
robot team is tasked with transporting an object from its initial
pose p0 to a final pose g, resulting in an object trajectory
p : [0, 1] → W , where p(0) = p0 and p(1) = g, belonging

Fig. 3: Illustration of our topological abstraction for representing
strategies of workspace traversal. Representing workspace traversal
strategies as tuples of winding number signs, W . In this scene
with two obstacles, there are four possible strategies represented as
continuous curves. The red curve highlights a strategy corresponding
to passing on the right of o1 (w1 > 0), and the left of o2 (w2 < 0).
This representation is applicable to any number of obstacles.

to an appropriate space of trajectories P . Obstacles, defined
as the connected components of O, naturally partition P into
equivalence classes Ψ, where each ψ ∈ Ψ represents a dis-
tinct workspace traversal strategy under which the transported
object can travel from p0 to g, i.e.,

P =
⋃
ψ∈Ψ

ψ

∀ψi, ψj ∈ Ψ : (ψi ∩ ψj ̸= ∅) =⇒ (ψi = ψj)

∀pi,pj ∈ ψ : pi ∼ pj

. (1)

These classes can be identified using a notion of topological
invariance. The works of Kretzschmar et al. [13], Mavro-
giannis et al. [17], Vernaza et al. [29] use winding numbers
to describe topological relationships between the robot and
obstacles or humans navigating around it. Here, we adapt
this idea to collaborative transport by enumerating the set of
homotopy classes between the object trajectory and obstacles
in the workspace. Specifically, for any object trajectory p
embedded in a space with m obstacles o1, . . . , om, we can
define winding numbers

wi =
1

2π

∑
t

∆θit, i = 1, . . . ,m, (2)

where ∆θit = ∠ (pt − oi, pt−1 − oi) denotes an angular dis-
placement corresponding to the transfer of the object from
pt−1 to pt. The sign of wi represents the passing side be-
tween the object and the i-th obstacle, and its absolute value
represents the number of times the object encircled the i-th
obstacle. For a trajectory p, the tuple of winding number signs

W = (signw1, . . . , signwm) (3)

represents an equivalence class describing how the human-
robot team transported the object past all obstacles in the
environment. In this work, we model the space of joint
strategies Ψ as set of distinct W , i.e., |Ψ| = 2m.

B. Inferring Strategies of Workspace Traversal

We describe an inference mechanism that maps observations
of team actions to a belief over a workspace traversal strategy.



This mechanism is agnostic to the specific definition of the
strategy. At time t, we assume that the robot observes the joint
action α = (a, u), object state p, and task context c = (g,O).
Given α, p, and c, our goal is to infer the unfolding workspace
traversal strategy, ψ, i.e.,

P(ψ | α, p, c). (4)

Using Bayes’ rule, we can expand (4) as

P(ψ | α, p, c) = 1

η
P(α | ψ, p, c)P(ψ | p, c), (5)

where the left-hand side expression is the posterior distribution
of the joint strategy ψ, and on the right-hand side, η is a
normalizer across α, P(α | ψ, p, c) is the joint action likelihood
distribution and P(ψ | p, c) is a prior distribution of the joint
strategy before observing the joint action. We can rewrite the
joint action likelihood distribution as

P(α | ψ, p, c) = P(a | ψ, p, c)P(u | ψ, p, c), (6)

since the two agents choose their actions independently.
The distribution of (4) allows the robot to represent the

belief of its partner over the unfolding traversal strategy.
A natural measure of uncertainty over the observer’s belief
regarding that strategy can be acquired by computing the
information entropy of ψ, conditioned on known α, p, c:

H (ψ | α, p, c) = −
∑
ψ∈Ψ

P(ψ | α, p, c) logP(ψ | α, p, c). (7)

Intuitively, the higher H is, the higher the uncertainty of the
user over the unfolding ψ is assumed to be.

C. Integrating Human Inferences into Robot Control

We integrate the inference mechanism of (4) into a model
predictive control (MPC) algorithm by using its entropy (7)
as a cost. Given the context c = (g,O) and the object state
p at time t, the goal of the MPC is to find the sequence
of future robot actions u∗ that minimizes a cost function J
over a horizon T . At every control cycle, the MPC solves the
following planning problem:

(ut:t+T )
∗
= arg min

ut:t+T

J(pt:t+T , ut:t+T )

s.t. pk+1 = f(pk, ak, uk)

ak ∈ A
uk ∈ U

, (8)

We split J into a running cost Jk and a terminal cost JT

J(pt:t+T , ut:t+T ) =

T∑
k=0

γkJk(pt+k, ut+k)

+ JT (pt+T , ut+T )

, (9)

where γ is a discount factor, and the terminal cost penalizes
distance from the object’s goal pose g:

JT (pt+k, ut+k) = ||pt+k − g||2. (10)

The running cost Jk is a weighted sum of two terms, i.e.,

Jk(pt+k, ut+k) =wobsJobs(pt+k, ut+k)

+ wentJent(pt+k, ut+k),
(11)

where

Jobs(pt+k, ut+k) =

max

(
0,− log

(
min
o∈O

||pt+k − o||
δ

))
, (12)

is a collision avoidance cost penalizing proximity to obstacles,
δ is a clearance threshold, Jent is a cost proportional to the
entropy defined in (7), and wobs, went are weights.

We refer to this control framework as Implicit Communi-
cation MPC, or IC-MPC. At every control cycle, IC-MPC
plans a future robot trajectory that balances between functional
objectives (collision avoidance, progress to goal) and commu-
nicative objectives (minimizing the partner’s uncertainty over
the upcoming joint strategy). The robot executes the first action
ut from the planned trajectory and then replans. This process
is repeated in fixed control cycles until the task is completed.

IV. USER STUDY

We conducted an IRB-approved, within-subjects user study
(U-M HUM00254044) in which a user collaborates with a
robot to jointly transport an object to a designated pose. The
team operates in a workspace with area 2.8 × 5.6 m2, fitted
with an overhead motion capture system that continuously
streams poses and velocities of the robot and the user (via a
construction-style helmet) at 120 Hz. To study the coordination
of the human-robot team over a discrete decision, a single
static obstacle of area 0.15× 0.15 m2 is placed in the center
of the workspace (see Fig. 1). Full experimental details and
analysis can be found in [31].

A. Experiment Design

Algorithms. We compare the performance of our frame-
work (IC-MPC) against two baselines:

• Vanilla-MPC: A purely functional ablation of IC-MPC
with no uncertainty-minimizing objective (went = 0).

• VRNN [20]: A learning-based path planner based on a
Variational Recurrent Neural Network that predicts the
most likely future path of the object based on human
demonstrations. The robot takes actions to track path
predictions as closely as possible.

Human modeling. Since our study involved an environment
with a single obstacle, we set Ψ = {LEFT, RIGHT}, corre-
sponding respectively to w < 0 and w > 0. We instantiated
the strategy inference using analytical models of the prior
distribution and joint action likelihood distribution (5).

We model the prior distribution over the joint strategy as a
function of the winding number w. Without loss of generality,
when p0, o, g are collinear, we consider the obstacle to have
been passed when |w| ≥ 1

4 :

P(LEFT | p, c) = max (0,min (0.5− 2w, 1))

P(RIGHT | p, c) = max (0,min (0.5 + 2w, 1))
(13)



Fig. 4: Workspace traversal strategy inference. The prior distribution
for P(LEFT | p, c) is shown as a colormap in the background, and
the mode of the action likelihood distribution for P(a | LEFT, p, c) is
shown using gray arrows in the foreground.

TABLE I: Summary of evaluation metrics. ∗p < .05, ∗∗p < .01,
∗∗∗p < .001

Metric IC-MPC Vanilla-MPC VRNN

Success rate (%) ↑ 98.6 88.9 51.4

Warmth [4] ↑ 3.44 (1.89) 3.12 (1.98) 2.99 (1.82)
Competence [4] ↑ 6.06 (1.86) 5.15 (1.82)∗ 4.02 (1.88)∗∗∗
Discomfort [4] ↓ 2.15 (1.29) 2.86 (1.84)∗ 3.22 (1.49)∗∗∗

Fluency [9] ↑ 5.73 (1.02) 4.64 (1.41)∗∗ 3.67 (1.49)∗∗∗

Before the obstacle is passed, the action likelihood dis-
tribution models the most likely action as the velocity that
maximizes change in the winding number w. We approximate
this as

P(a | LEFT, p, c) ∝ exp
(
a ·R

(π
3

)−→po)
P(a | RIGHT, p, c) ∝ exp

(
a ·R

(
−π
3

)−→po) (14)

where R(·) is a 2D rotation matrix. After the obstacle is
passed, the most likely action is instead in the direction of the
goal. We illustrate the prior and action likelihood distributions
for ψ = LEFT in Fig. 4. The same model of the action
likelihood distribution is used for human and robot actions.
Observations of human velocities are downsampled to 10 Hz
from the motion capture, and a constant velocity model is used
for the human motion prediction rollouts [24].

B. Results

We report a summary of objective and subjective metrics
for each algorithm in Table I. IC-MPC exhibited substan-
tially higher success rate compared to both Vanilla-MPC
and VRNN. Using the Friedman statistical test, we found
significant effects of the robot algorithm on users’ perception
of competence, discomfort, and fluency. Post-hoc tests found
that IC-MPC was judged by users as: significantly more
competent compared to Vanilla-MPC (p = .021) and VRNN
(p < .001); significantly less discomforting compared to
Vanilla-MPC (p = .018) and VRNN (p < .001); a significantly
more fluent collaborator compared to Vanilla-MPC (p = .002)
and VRNN (p < .001).

V. DISCUSSION

For the user study in this work, we considered coordination
over a binary decision affecting a global characteristic of the
trajectory followed by the human-robot team. As such, we
instantiated a workspace in which the agents navigate around
a single obstacle. In this workspace, we found that the compu-
tationally simple, analytical models of action likelihood and
constant-velocity human motion prediction were effective to
build inference and communicative mechanisms that enabled
greater team performance and more positive user impressions
compared to baseline methods. We note that the interaction
may have been influenced by the robot’s maximum speed (0.3
m/s) and payload (2 kg).

However, we also consider scenarios that admit much
greater levels of complexity in the agents’ movements. The
two agents may need to manipulate the object along additional
degrees of freedom, e.g., to lift the object over an obstacle
or to pivot it through a narrow passageway. Additionally, the
agents may make sudden, reactive movements, such as to
balance an item on the object or to avoid dynamic obstacles.
In these situations, the models we used in this study may be
insufficient and impossible to reformulate analytically. To this
end, in ongoing work, we aim to learn a model of human
motion for collaborative transport from a dataset of human-
human demonstrations [7] (Fig. 5). In contrast to human
motion prediction in many existing domains of interest, human
motion in collaborative transport is constrained by the physical
coupling and dynamics of the two agents and the transported
object. In particular, we are interested in modeling both the
motion of the human and the forces and torques imparted on
the object as a consequence of the human’s motion. Thus, our
model of interest takes the following form:

P

(
xHt+1:t+T , w

H
t+1:t+T

∣∣∣∣∣ xOBJ
t−H:t, x

H
t−H:t, x

R
t−H:t,

wHt−H:t, w
R
t−H:t, ψ, c

)
, (15)

where xOBJ is the pose of the object, xH , xR are the kinematic
states of the agents, wH , wR are wrenches that the two
agents impart onto the object, ψ is a joint strategy, and c
encapsulates task context, such as obstacles in the environment
and the goal. This model is an extended implementation of the
action likelihood distribution (6) used in this work, and can
be incorporated into a similar posterior distribution (5) and
subsequent controller, e.g., using entropy (7) or other measures
of uncertainty.

Fig. 5: Frame from the object transport dataset published by Free-
man et al. [7] (left), augmented with human poses extracted using
TRAM [30] (right).
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