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Abstract
We focus on human-robot collaborative transport, in which a ro-
bot and a user collaboratively move an object to a goal pose. In
the absence of explicit communication, this problem is challeng-
ing because it demands tight implicit coordination between two
heterogeneous agents, who have very different sensing, actuation,
and reasoning capabilities. Our key insight is that the two agents
can coordinate fluently by encoding subtle, communicative signals
into actions that affect the state of the transported object. To this
end, we design an inference mechanism that probabilistically maps
observations of joint actions executed by the two agents to a set of
joint strategies of workspace traversal. Based on this mechanism,
we define a cost representing the human’s uncertainty over the
unfolding traversal strategy and introduce it into a model predic-
tive controller that balances between uncertainty minimization and
efficiency maximization. We deploy our framework on a mobile ma-
nipulator (Hello Robot Stretch) and evaluate it in a within-subjects
lab study (𝑁 = 24). We show that our framework empowers the
robot to be perceived as a significantly more fluent and competent
partner compared to baselines lacking a communicative mecha-
nism.

CCS Concepts
• Computer systems organization → Robotic autonomy; •
Human-centered computing → Human computer interac-
tion (HCI); • Computing methodologies→ Cooperation and
coordination.
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1 Introduction
Recently, there has been vivid interest in developing physically
capable robot partners that could assist humans in context-rich,
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Figure 1: Footage from our study (𝑁 = 24) involving the col-
laborative transport of an object (orange stick) by a user and
a mobile manipulator in a workspace with an obstacle (red
color). The robot runs our controller (IC-MPC), designed to
balance functional and communicative actions in collabora-
tive tasks.

dynamic and unstructured domains [26] like homes [28, 31] and
manufacturing sites [16]. An important task in this space involves
the collaborative transport of objects that might be too large or too
heavy to be transported by a single agent. This task is especially
challenging as it not only requires efficient and fluent coordination
between the two heterogeneous partners but also the simultaneous
satisfaction of geometric, kinematic, and physics constraints.

Humans often tackle physically demanding collaborative tasks
like transport by fluently coordinating their physical movements
with their partners [25] even without a concrete plan, with minimal
explicit coordination. This capability relies on sophisticated mecha-
nisms connecting perception and action. A prevalent theory from
action understanding, commonly referred to as the “teleological
stance”, highlights that agents’ actions can often be explained by
an underlying goal [1, 5, 7]. This idea has inspired researchers in
human-robot interaction (HRI) to develop mechanisms that com-
municate a robot’s intended goal to an observer through its ac-
tions [6, 11]. These mechanisms have produced intent-expressive
robot behavior in manipulation [6], autonomous driving [24], and
social robot navigation [17]. Likewise, we view communication—
especially implicit communication [11], the ability to infer and
convey information within physical actions—to be a critical skill of
robots working in close physical collaboration with humans. Im-
plicit communication can be low-latency, robust to environmental
disturbances (e.g., noise, poor lighting conditions), and require less
attention compared to explicit forms.While explicit communication
remains highly relevant to team activities, implicit communication
serves as an important complement that supports fluent teamwork.
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To investigate the implications of implicit communication for
physical human-robot teamwork, we instantiate a task of human-
robot collaborative transport, where the goal of the human-robot
team is to collaboratively move an object to a goal pose while
avoiding collisions with static obstacles (see Fig. 1). In this task,
the user is simultaneously an observer of the robot and a dynamic
actor, persistently influencing and being influenced by the robot
while it physically collaborates with them. While prior work in
human-robot collaborative transport has emphasized fixed lead-
ership roles for the two agents [2, 3, 15, 19, 22, 27], we consider a
dynamic negotiation over a joint strategy of workspace traversal. We
contribute a control framework that leverages implicit communica-
tion [11] through actions influencing the state of the transported
object to enable the robot to negotiate an efficient traversal with
its human partner. We move beyond past work on implicit commu-
nication, where the user is either not an actor [6] or not physically
collaborating with their robot partner [14, 17]. We demonstrate
our framework on a mobile manipulator and evaluate it in a lab
study (𝑁 = 24) involving the collaborative transport of an ob-
ject in a workspace with an obstacle obstruction. In our full pa-
per [30], we perform a full analysis to show that our framework out-
performs baselines lacking a communicative mechanism in terms
of task completion and human impressions. Additionally, we in-
clude videos from the study (https://youtu.be/0NTDrobSifg) and
code and data that could help the community iterate on our work
(https://github.com/fluentrobotics/icmpc_collab_transport).

2 Problem Statement
We consider a human 𝐻 and a robot 𝑅 collaboratively transport-
ing an object. The robot and the human grasp the object at a
fixed height; this allows us to instantiate the problem on a pla-
nar workspace W ⊆ 𝑆𝐸 (2). Assuming a quasistatic setting, the
object’s state 𝑝 ∈ W evolves according to 𝑝𝑘+1 = 𝑓 (𝑝𝑘 , 𝑎𝑘 , 𝑢𝑘 ),
where 𝑎 ∈ A, 𝑢 ∈ U represent human and robot velocities, re-
spectively, and 𝑘 is a time index. The workspace includes a set of
obstacle-occupied regions O ⊂ W. The goal of the human-robot
team is to transport the object from an initial pose 𝑝0 to a desired
pose 𝑔 in W (see Fig. 2) while avoiding collisions with O. We as-
sume that the two agents do not communicate explicitly (e.g., via
language), but they observe the actions of one another. Our goal
is to design a control policy to enable the robot to efficiently and
fluently collaborate with its human partner.

3 Balancing Functional and Communicative
Actions in Human-Robot Collaborative
Transport

3.1 Formalizing Joint Strategies of Workspace
Traversal

Collaborative tasks involving multiple agents working together
require consensus on a joint strategy 𝜓 , i.e., a qualitatively distinct
way of completing the task, out of the set of all possible joint
strategies, Ψ. Often, this consensus is not established a priori; rather,
it is dynamically negotiated during execution. The abstraction of a
joint strategy effectively captures critical domain knowledge at a
representation level. While prior work on collaborative transport

Figure 2: Ahuman (H) and a robot (R) collaborativelymove an
object from an initial pose 𝑝0 to a final pose 𝑔 in a workspace
W. An obstacle O stands in their way. To avoid collisions
with O and reach 𝑔, they have to coordinate on a strategy
of workspace traversal. In this work, we engineer implicit
coordination through the velocities 𝑎 and 𝑢 that the human
and the robot exert on the object.

has emphasized role assignment across the team (i.e., whether the
robot or the human are leading or following each other) [10, 20,
23], realistic, obstacle-cluttered environments present additional
important challenges, such as the decision over how to pass through
an obstacle-cluttered workspace.

In this work, we formalize the space of workspace traversal
strategies using tools from homotopy theory [12]. The human-robot
team is tasked with transporting an object from its initial pose 𝑝0
to a final pose 𝑔, resulting in an object trajectory 𝒑 : [0, 1] → W,
where 𝒑(0) = 𝑝0 and 𝒑(1) = 𝑔, belonging to an appropriate space
of trajectories P. Obstacles, defined as the connected components
of O, naturally partition P into equivalence classes Ψ, where each
𝜓 ∈ Ψ represents a distinct workspace traversal strategy under
which the transported object can travel from 𝑝0 to 𝑔, i.e.,

P =
⋃
𝜓 ∈Ψ

𝜓

∀𝜓 𝑖 ,𝜓 𝑗 ∈ Ψ : (𝜓 𝑖 ∩𝜓 𝑗 ≠ ∅) =⇒ (𝜓 𝑖 = 𝜓 𝑗 )
∀𝒑𝑖 ,𝒑 𝑗 ∈ 𝜓 : 𝒑𝑖 ∼ 𝒑 𝑗

. (1)

These classes can be identified using a notion of topological
invariance. The works of Kretzschmar et al. [13], Mavrogiannis
et al. [18], Vernaza et al. [29] use winding numbers to describe
topological relationships between the robot and obstacles or hu-
mans navigating around it. Here, we adapt this idea to collaborative
transport by enumerating the set of homotopy classes between
the object trajectory and obstacles in the workspace. Specifically,
for any object trajectory 𝒑 embedded in a space with𝑚 obstacles
𝑜1, . . . , 𝑜𝑚 , we can define winding numbers

𝑤𝑖 =
1
2𝜋

∑︁
𝑡

Δ𝜃𝑖𝑡 , 𝑖 = 1, . . . ,𝑚, (2)

whereΔ𝜃𝑖𝑡 = ∠ (𝑝𝑡 − 𝑜𝑖 , 𝑝𝑡−1 − 𝑜𝑖 ) denotes an angular displacement
corresponding to the transfer of the object from 𝑝𝑡−1 to 𝑝𝑡 . The
sign of𝑤𝑖 represents the passing side between the object and the
𝑖-th obstacle, and its absolute value represents the number of times
the object encircled the 𝑖-th obstacle. For a trajectory 𝒑, the tuple

https://youtu.be/0NTDrobSifg
https://github.com/fluentrobotics/icmpc_collab_transport
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Figure 3: Illustration of our topological abstraction for rep-
resenting strategies of workspace traversal. Representing
workspace traversal strategies as tuples of winding number
signs,𝑊 . In this scene with two obstacles, there are four pos-
sible strategies represented as continuous curves. The red
curve highlights a strategy corresponding to passing on the
right of 𝑜1 (𝑤1 > 0), and the left of 𝑜2 (𝑤2 < 0). This represen-
tation is applicable to any number of obstacles.

of winding number signs

𝑊 = (sign𝑤1, . . . , sign𝑤𝑚) (3)

represents an equivalence class describing how the human-robot
team transported the object past all obstacles in the environment.
In this work, we model the space of joint strategies Ψ as set of
distinct𝑊 , i.e., |Ψ| = 2𝑚 .

3.2 Inferring Strategies of Workspace Traversal
We describe an inference mechanism that maps observations of
team actions to a belief over a workspace traversal strategy. This
mechanism is agnostic to the specific definition of the strategy. At
time 𝑡 , we assume that the robot observes the joint action 𝛼 = (𝑎,𝑢),
object state 𝑝 , and task context 𝑐 = (𝑔,O). Given 𝛼 , 𝑝 , and 𝑐 , our
goal is to infer the unfolding workspace traversal strategy,𝜓 , i.e.,

P(𝜓 | 𝛼, 𝑝, 𝑐). (4)

Using Bayes’ rule, we can expand (4) as

P(𝜓 | 𝛼, 𝑝, 𝑐) = 1
𝜂
P(𝛼 | 𝜓, 𝑝, 𝑐) P(𝜓 | 𝑝, 𝑐), (5)

where the left-hand side expression is the posterior distribution of
the joint strategy𝜓 , and on the right-hand side, 𝜂 is a normalizer
across 𝛼 , P(𝛼 | 𝜓, 𝑝, 𝑐) is the joint action likelihood distribution
and P(𝜓 | 𝑝, 𝑐) is a prior distribution of the joint strategy before
observing the joint action.We can rewrite the joint action likelihood
distribution as

P(𝛼 | 𝜓, 𝑝, 𝑐) = P(𝑎 | 𝜓, 𝑝, 𝑐) P(𝑢 | 𝜓, 𝑝, 𝑐), (6)

since the two agents choose their actions independently.
The distribution of (4) allows the robot to represent the belief of

its partner over the unfolding traversal strategy. A natural measure
of uncertainty over the observer’s belief regarding that strategy can
be acquired by computing the information entropy of𝜓 , conditioned
on known 𝛼, 𝑝, 𝑐:

𝐻 (𝜓 | 𝛼, 𝑝, 𝑐) = −
∑︁
𝜓 ∈Ψ

P(𝜓 | 𝛼, 𝑝, 𝑐) logP(𝜓 | 𝛼, 𝑝, 𝑐). (7)

Intuitively, the higher 𝐻 is, the higher the uncertainty of the user
over the unfolding𝜓 is assumed to be.

3.3 Integrating Human Inferences into Robot
Control

We integrate the inference mechanism of (4) into a model predictive
control (MPC) algorithm by using its entropy (7) as a cost. Given
the context 𝑐 = (𝑔,O) and the object state 𝑝 at time 𝑡 , the goal
of the MPC is to find the sequence of future robot actions 𝒖∗ that
minimizes a cost function 𝐽 over a horizon𝑇 . At every control cycle,
the MPC solves the following planning problem:

(𝑢𝑡 :𝑡+𝑇 )∗ = arg min
𝑢𝑡 :𝑡+𝑇

𝐽 (𝑝𝑡 :𝑡+𝑇 , 𝑢𝑡 :𝑡+𝑇 )

𝑠 .𝑡 . 𝑝𝑘+1 = 𝑓 (𝑝𝑘 , 𝑎𝑘 , 𝑢𝑘 )
𝑎𝑘 ∈ A
𝑢𝑘 ∈ U

, (8)

We split 𝐽 into a running cost 𝐽𝑘 and a terminal cost 𝐽𝑇

𝐽 (𝑝𝑡 :𝑡+𝑇 , 𝑢𝑡 :𝑡+𝑇 ) =
𝑇∑︁
𝑘=0

𝛾𝑘 𝐽𝑘 (𝑝𝑡+𝑘 , 𝑢𝑡+𝑘 )

+ 𝐽𝑇 (𝑝𝑡+𝑇 , 𝑢𝑡+𝑇 )
, (9)

where𝛾 is a discount factor, and the terminal cost penalizes distance
from the object’s goal pose 𝑔:

𝐽𝑇 (𝑝𝑡+𝑘 , 𝑢𝑡+𝑘 ) = | |𝑝𝑡+𝑘 − 𝑔| |2. (10)

The running cost 𝐽𝑘 is a weighted sum of two terms, i.e.,
𝐽𝑘 (𝑝𝑡+𝑘 , 𝑢𝑡+𝑘 ) =𝑤𝑜𝑏𝑠 𝐽𝑜𝑏𝑠 (𝑝𝑡+𝑘 , 𝑢𝑡+𝑘 )

+𝑤𝑒𝑛𝑡 𝐽𝑒𝑛𝑡 (𝑝𝑡+𝑘 , 𝑢𝑡+𝑘 ),
(11)

where
𝐽𝑜𝑏𝑠 (𝑝𝑡+𝑘 , 𝑢𝑡+𝑘 ) =

max
(
0,− log

(
min
𝑜∈O

| |𝑝𝑡+𝑘 − 𝑜 | |
𝛿

)) , (12)

is a collision avoidance cost penalizing proximity to obstacles, 𝛿
is a clearance threshold, 𝐽𝑒𝑛𝑡 is a cost proportional to the entropy
defined in (7), and𝑤𝑜𝑏𝑠 ,𝑤𝑒𝑛𝑡 are weights.

We refer to this control framework as Implicit Communication
MPC, or IC-MPC. At every control cycle, IC-MPC plans a future ro-
bot trajectory that balances between functional objectives (collision
avoidance, progress to goal) and communicative objectives (mini-
mizing the partner’s uncertainty over the upcoming joint strategy).
The robot executes the first action 𝑢𝑡 from the planned trajectory
and then replans. This process is repeated in fixed control cycles
until the task is completed.

4 User Study
We conducted an IRB-approved, within-subjects user study (U-M
HUM00254044) in which a user collaborates with a robot to jointly
transport an object to a designated pose. Each user experienced
the same set of conditions, each corresponding to a collaborative
algorithm running on the robot: ours, and two baselines. Through
mailing lists, we recruited 24 participants (4 female, 18male, 2 other),
aged 18-29 from a university population. On average, participants
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Figure 4: Spatial distribution of object trajectories within the workspace during the user study, including failure cases, itemized
per algorithm. IC-MPC exhibits an almost uniform split between right and left, whereas baselines show mixed performance,
including undesirable zig-zagging effects, an artifact of increased uncertainty over the unfolding traversal strategy.

Table 1: Friedman test results on subjective metrics.

Metric 𝜒2 (2) 𝑝 𝑊𝑘

Warmth [4] 3.85 0.146 0.08
Competence [4] 18.86 < .001 0.39
Discomfort [4] 15.46 < .001 0.32
Fluency [8] 28.15 < .001 0.59

Table 2: Mean and standard deviation of subjective metrics.
∗𝑝 < .05, ∗∗𝑝 < .01, ∗∗∗𝑝 < .001

Metric IC-MPC Vanilla-MPC VRNN
Warmth [4] ↑ 3.44 (1.89) 3.12 (1.98) 2.99 (1.82)
Competence [4] ↑ 6.06 (1.86) 5.15 (1.82)∗ 4.02 (1.88)∗∗∗
Discomfort [4] ↓ 2.15 (1.29) 2.86 (1.84)∗ 3.22 (1.49)∗∗∗

Fluency [8] ↑ 5.73 (1.02) 4.64 (1.41)∗∗ 3.67 (1.49)∗∗∗

rated of their familiarity with robotics technology as 4.1 (SD =
0.74) on a scale from 1 (not at all familiar) to 5 (very familiar). The
study lasted 45 minutes, and each participant received $20. Full
experimental details and analysis can be found in [30].

4.1 Experiment Design
Task Description. The user and the robot hold opposite ends of
an object (a wooden stick) and transport it together from an initial
pose to a goal pose. The team operates in a workspace with area
2.8×5.6𝑚2. To study the coordination of the human-robot team over
a discrete decision, a single static obstacle of area 0.15 × 0.15𝑚2 is
placed in the center of the workspace (see Fig. 1). Users collaborate
with each algorithm three times to ensure they experience a diverse
range of interactions.

Algorithms.We compare the performance of our framework
(IC-MPC) against two baselines:

• Vanilla-MPC: A purely functional ablation of IC-MPC with
no uncertainty-minimizing objective (𝑤𝑒𝑛𝑡 = 0).

• VRNN [21]: A learning-based path planner based on a Vari-
ational Recurrent Neural Network that predicts the most
likely future path of the object based on human demonstra-
tions. The robot takes actions to track path predictions as
closely as possible.

Figure 5: Entropy over the workspace traversal strategy as a
proxy for strategy uncertainty, averaged across all trials for
each algorithm. By directly minimizing the entropy, IC-MPC
accelerates consensus on a traversal strategy. This reduces
undesirable zig-zagging artifacts, present in the execution of
baselines (see Fig. 4).

4.2 Discussion
We found that collected metrics did not uniformly pass the Shapiro-
Wilk test of normality. Thus, for consistency, we use the non-
parametric Friedman test to detect effects of the robot algorithms
on dependent variables and the non-parametric paired Wilcoxon
signed-rank test with Holm-Bonferroni corrections [9] for post-hoc
pairwise comparison tests. Effect sizes are reported using Kendall’s
coefficient of concordance (denoted as𝑊𝑘 to disambiguate it from
the test statistic of the Wilcoxon signed-rank test) and Cohen’s 𝑑 .

We report test statistics for subjective metrics in Table 1 and a
summary of subjective metrics for each algorithm in Table 2. We
found a significant effect of the robot algorithm on users’ percep-
tion of competence, discomfort, and fluency. Post-hoc tests found
that IC-MPC was judged by users as: significantly more competent
compared to Vanilla-MPC (𝑊 = 55, 𝑝 = .021, 𝑑 = 0.49) and VRNN
(𝑊 = 26, 𝑝 < .001, 𝑑 = 1.09); significantly less discomforting com-
pared to Vanilla-MPC (𝑊 = 30, 𝑝 = .018, 𝑑 = −0.44) and VRNN
(𝑊 = 13.5, 𝑝 < .001, 𝑑 = −0.76); a significantly more fluent col-
laborator compared to Vanilla-MPC (𝑊 = 28, 𝑝 = .002, 𝑑 = 0.89)
and VRNN (𝑊 = 11, 𝑝 < .001, 𝑑 = 1.61). No statistically significant
effect was found on users’ perception of warmth.
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The spatial distribution of object trajectories (Fig. 4) reveals that
teams took wider paths around the obstacle when the robot was
running IC-MPC compared to Vanilla-MPC and VRNN.Without im-
plicit communication mechanisms to resolve ambiguity or achieve
consensus on traversal strategy, both baselines would often drive
straight towards the goal and attempt to pass the obstacle from
directions opposite the user, leading to collisions. By acting earlier
to take wider paths compared to Vanilla-MPC and VRNN, IC-MPC
reduced uncertainty about the joint strategy faster than baselines
(Fig. 5), thereby reducing the chance of similar collisions. As wider
paths are longer than more direct paths, teams took more time on
average to complete the task when the robot was running IC-MPC
compared to VRNN.

Users noticed qualitative differences among algorithms. In open-
ended responses, they described VRNN as “unpredictable” and “in-
decisive”. One user described Vanilla-MPC as “a bad teammate that
only does what they think is right”. Two users who interacted with
IC-MPC after one or both baselines whose comments were com-
parative in nature wrote that IC-MPC “felt more natural” and that
“the collaboration on the task was a lot more seamless in this series
of attempts”.

At the start of each study session, we intentionally provided the
vague instruction to “collaborate in whichever way feels natural”.
However, we received informal feedback from several participants
that aspects of the interaction, including communication with the
robot, did not feel natural or intuitive. Participants expressed confu-
sion about how they could communicate with the robot andwhether
the robot was acknowledging, understanding, or ignoringwhat they
were trying to communicate. Designing the robot to be expressive
may facilitate interactions that are perceived as more natural.
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